Features

Cryogenic Target

Gaseous detecto

Conclusion

The nptool framework: new opportunities for simulation and analysis of gaseous detector (and system!)

Adrien MATTA, ^a for the nptool collaboration

^aLPC Caen, ENSICAEN, UNICAEN, CNRS-IN2P3

ENSAR2 GDS workshop, Thursday 24th January 2019

Introduction ●00000		Cryogenic Target				
Simulation and analysis landscape						
Root		Gean	t4			
 CERN sup Standard f Tree / MV Physics Classing 	ported or data analysis ⁄A ass	• (• 5 • (• N	CERN supported itandard for MC simula Geometry / Material Natter Interaction / Tr	ition ansport		

Introduction Feat •00000 000	ures Cryogenic T				
Simulation and analysis landscape					
Root		Geant4			
• CERN supported	ł	• CERN supported	Ŀ		
• Standard for dat	a analysis	• Standard for MO	C simulation		
• Tree / MVA		• Geometry / Mat	terial		
 Physics Class 		• Matter Interacti	on / Transport		
Usual approach in	the Nuclear Phys	cs community			
• Purpose made co	ode o almost one pe	er experiment			
 Separate Simulat 	ion and Analysis $ ightarrow$	hard to validate			
 Poorly modular 					

• Not maintained

Introduction Features Cryoger ●000000 000000 000000					
Simulation and analysis landscape					
Root	Geant4				
 CERN supported 	 CERN supported 				
 Standard for data analysis 	 Standard for MC simulation 				
• Tree / MVA	 Geometry / Material 				
 Physics Class 	Matter Interaction / Transport				
Usual approach in the Nuclear Ph	ysics community				
• Purpose made code $ ightarrow$ almost one	per experiment				
• Separate Simulation and Analysis -	ightarrow hard to validate				
 Poorly modular 					
 Not maintained 					
a few exceptions (not exhaustif)					
• Kaliveda (Indra / Fazia)					

- FAIRRoot (FAIR)
- nptool (no string attached)

Key Concept

- A common framework for low energy nuclear physics experiment
- By and for the community: Open source, everybody is welcome!
- Modular and scalable ightarrow Any detector, any setup, any physics
- Promote good practices:
 - Framework philosophy \rightarrow best use of Root and Geant4, readable input, ...
 - Implementation \rightarrow Well commented, documented, readable code, ...
 - Physics \rightarrow Validate simulation and analysis together

Basic workflow

Introduction 000000 Study case: P. Morfouace's PhD Problem Setup

Problem

- Additional line in E-TOF ID plot
- Calibration? Corrupted Data? Real Physics?

Adrien MATTA, for the nptool collaboration

Introduction 000000 Study case: P. Morfouace's PhD Setup Hypothesis

Position in MUST2 Time of Flight 420 Y (mm) Energy (MeV) 100 410 400 50 390 380 370 360 350 -100 340 -100 50 100 20 -50 10 TOF (ns) X (mm)

Hypothesis

- Spatial distribution of the problematic particles
- Have to do with geometry of the setup! •

 Introduction
 Features
 Cryogenic Target
 Gaseous detector
 Conclusion

 Study case:
 P. Morfouace's PhD

Simulation

- Done in 5 mins
- Final plots in 15 mins

Introduction		Cryogenic Target	
000000			
What is	nntool?		

Concrete implementation

- Detectors are plugin library
- Event Generator are plugin library
 - $\rightarrow\,$ Dynamic loading at run time
 - $\rightarrow~$ User focus on what matters
 - $\rightarrow\,$ Increased stability and performances
- All executables are Physics and Setup agnostic
- Wizard script and template to add new detector and event generator
 - $\rightarrow\,$ Get to work on your detectors/physics within minutes
 - \rightarrow Homogeneity across detectors/physics
 - $\rightarrow~$ Learn one detector, understand all of them

OOOOOO OOOOOO OOOOOO OOOOOOO	00000 00
What is nptool?	
Information sources	
Publication J. of Phys.	G, Volume 43, Number 4
Project website nptool.org	
Project repository github.com	n/adrien-matta/nptool
Main Contributors	Other lab users
 Adrien Matta (LPC) 	University of Surrey
 Nicolas de Sereville (IPNO) 	• CEA
 Pierre Morfouace (CEA/DAM) 	• Triumf
 Marc Labiche (STFC/Dares. Lab) 	• GANIL
 Freddy Flavigny (IPNO) 	 Texas A&M
 Robert Shearman (NPL) 	Bose Institute
 Greg Christian (Texas A&M) 	MSU/NSCL
• D. Cox (Lundt)	 University of Liverpool

000000 00000	000000	00000	
nptool in numbe	ers		
The collaboration			
• 16 contributors, aroun	nd 25 users		
• 15 PhD, 1 dedicated p	paper, 10 citations		
 14 laboratory involved 	l		
Code repository			
• 2500+ commits			
• 50 000 line of code (n	nainly C++)		
• 50+ detectors			
• 14 minutes to build ar	nd test each commit with	TravisCl	
#10yearsChallenge			
	nptool is 10!		
	NPTool dec. 2005 2015		

Introduction		Cryogenic Target		
nptool i	n number	S		
The collabo	ration			
• 16 contri	butors, around	25 users		
• 15 PhD,	1 dedicated pap	per, 10 citations		
• 14 labora	tory involved			
Code reposi	tory			
• 2500+ co	ommits			
• 50 000 lii	ne of code (mai	inly C++)		
• 50+ dete	ectors			
• 14 minut	es to build and	test each commit wit	h TravisCl	
1110,000 mg Ch	allance			

Adrien MATTA, for the nptool collaboration

Introduction 00000●		Cryogenic Target		
nptool i	n number	S		
The collabo	oration			
• 16 contri	ibutors, around	25 users		
• 15 PhD,	1 dedicated page	per, 10 citations		
• 14 labora	atory involved			
Code reposi	itory			
• 2500+ c	ommits			
• 50 000 li	ine of code (mai	inly C++)		
• 50+ dete	ectors			
• 14 minut	tes to build and	test each commit wit	h TravisCl	
#10vearsCl	nallenge			

Adrien MATTA, for the nptool collaboration

- Silicon (MUST2, HIRA, Sharc, TREX, GRIT, S1, ...)
- Ge (AGATA, MINIBALL)
- Scintillator (PARIS, FATIMA, NANA, DALI, NEUTRON WALL,...)
- Magnetic (HELIOS/ISS, VAMOS)
- Gas (IC, ACTAR, MINOS)

nntool

Features

Cryogenic Target

Gaseous detecto

Conclusion

Modular Physics List

- Interactive change of the physics list
- Support for inflight decay
- Support for neutron
- Support for optical photon

EmPhysicsList Option4 DefaultCutOff 1000000 DriftElectronPhysics 0 IonBinaryCascadePhysics 0 NPIonInelasticPhysics 0 EmExtraPhysics 0 HadronElasticPhysics 0 StoppingPhysics 0 OpticalPhysics 0 HadronPhysicsINCLXX 0 HadronPhysicsQGSP_BIC_HP 0 Decay 1

	Features 000●0	Cryogenic Target	
Event G	enerator		

- Beam and source \rightarrow Emmitance, energy distribution,...
- Two body reaction ightarrow angular distribution, beam energy dependence, ...
- Decay ightarrow Particle and γ , angular distribution
- Cosmic ray

	Features 0000●	Cryogenic Target	
User sna	ace		

Philosophy

- Experiment specific
 - $\rightarrow \ \mathsf{Analysis} \ \mathsf{Project}$
- Detector generic
 - \rightarrow NPLib, NPSimulation
- Separate Framework from plugin
 - $\rightarrow\,$ Focus on what matters
- Best of ROOT and Geant4
 → More on physics

Layout

Toolbox

Energy loss, Calibrations, Kinematics, Online ...

Adrien MATTA, for the nptool collaboration

Features

Cryogenic Target ●○○○○○ Gaseous detector

Conclusion

nptool for cryogenic target

Adrien MATTA, for the nptool collaboration nptool

Feature: 00000 Cryogenic Target

Gaseous detector

Conclusion

Input File

CryogenicTarget NominalThickness= 10 mm Material= LH2 Density= 8 ma/cm3 Radius= 10 cm Angle= 0 deg X = 0Y= 0 7 = 0FrontDeformation = 10 mmFrontThickness= 10 micrometer FrontRadius= 8 cm FrontMaterial= Mylar BackDeformation = 3 mmBackThickness= 10 micrometer BackRadius= 8 cm BackMaterial= Mvlar FrameRadius= 12 cm FrameThickness= 5 cm FrontCone= 45 dea BackCone= 45 dea FrameMaterial = AlShieldInnerRadius= 30 cm ShieldOuterRadius= 31 cm ShieldBottomLength= 20 cm ShieldTopLenath= 20 cm ShieldFrontRadius= 15 cm ShieldBackRadius= 10 cm ShieldMaterial = Al

Adrien MATTA, for the nptool collaboration

		Cryogenic T ○●○○○○	arget	
Input	File		Simulation	
C	ryogenicTarget NominalThickness= 10 mm Material= LH2 Density= 8 mg/cm3 Radius= 10 cm Angle= 0 deg X= 0 Y= 0 Z= 0 FrontDeformation= 10 mm FrontThickness= 10 micrometer FrontMaterial= Mylar BackDeformation = 3 mm BackThickness= 10 micrometer BackRadius= 8 cm BackAterial= Mylar FrameRadius= 12 cm FrameThickness= 5 cm FromtCone= 45 deg BrameMaterial= Al ShieldDuterRadius= 31 cm ShieldDuterRadius= 31 cm ShieldDuterRadius= 12 cm ShieldDuterRadius= 15 cm ShieldBackRadius= 10 cm			

Adrien MATTA, for the nptool collaboration

Features

Cryogenic Target

Gaseous detector

Conclusion

Target cell in details

Features

Cryogenic Target

Gaseous detector

Conclusion

Target cell in details

Windows deformation

$$\begin{split} f(x) &= (x_0 + b + 1) - cosh(\frac{x}{(R/acosh(b+1)}))\\ b &= \text{window maximum deformation}\\ x_0 &= \text{offset}\\ R &= \text{windows radius} \end{split}$$

Simulation

- Generate volumes
- Beam X Target

Analysis

- Beam X Target
- Position dependend E_{Loss}

Features

Cryogenic Target

Gaseous detecto

Conclusion

Study case: MUST2 (p,t) campaign (2018)

CryPTa (CNS/RIKEN)

Adrien MATTA, for the nptool collaboration

Adrien MATTA, for the nptool collaboration

Features

Cryogenic Target

Gaseous detector ●○○○○ Conclusion

nptool for TPC and Gas based detection

Adrien MATTA, for the nptool collaboration nptool

To be submitted to Geant4:

- Inspired by Optical Photon
- New particle: Drift electrons
- Weigthed track system
- Ionization with DE
- Transport
 - \rightarrow Realistic or Simplified
- Amplification/Absorption
- Drift/Diffusion
 - \rightarrow Properties of Material

Example4 (nptool.org)

	Cryogenic Target	Gaseous detector	Conclusion
		00000	

Geant4 Physics list for TPC (A. Matta & P. Morfouace)

To be submitted to Geant4:

- Inspired by Optical Photon
- New particle: Drift electrons
- Weigthed track system
- Ionization with DE
- Transport
 - \rightarrow Realistic or Simplified
- Amplification/Absorption
- Drift/Diffusion
 - \rightarrow Properties of Material

Tool box for TPC (P. Morfouace)

Part of NPLib:

- Track reconstruction
- Vertex detection

G4MaterialPropertiesTable* MPT = mem G4MaterialPropertiesTable()
MPT->AddConstProperty("DE_YIELD",3e-1);
MPT->AddConstProperty("DE_AMPLIFICATION",2);
MPT->AddConstProperty("DE_BASLENGTH",1*pc);
MPT->AddConstProperty("DE_BASLENGTH",1*pc);
MPT->AddConstProperty("DE_RANSUPERSUP.8.%rd,microsecond);
MPT->AddConstProperty("DE_TRANSUPERSUP.8.%rd,microsecond);
MPT->AddConstProperty("DE_CONGITUDINALSPREAD",2e-5*mmZ/ns);
MPT->AddConstProperty("DE_ONGITUDINALSPREAD",2e-5*mmZ/ns);

- RANSAC
- Hough transformation

Features

Cryogenic Target

Gaseous detector

Conclusion

Study case: ACTAR TPC

European Research Council

Established by the European Commission

cf J. Giovinazzo's talk

Adrien MATTA, for the nptool collaboration

Features

Cryogenic Target

Gaseous detector

Conclusion

ACTive TARget and Time Projection Chamber

Gas-Filled active target and TPC

- Gas = Target AND Detector
- Vertexing = reso. \sim thin solid target
- High effective thickness \sim x1000

Major advantages over conventional approaches

- Detection efficiency $\sim 4\pi$
- Low threshold: particle stop in the gas
- Event-by-event 3D reconstruction
- Compact, portable and versatile detector

Physics Programs

- Resonant Scattering
- Inelastic scattering and giant resonances
- Transfer reactions
- Rare and exotic decays $(2p,\beta-2p,..)$
- Transfer-induced fission,...

Features

Cryogenic Target

Gaseous detector

Conclusion

Morfouace Matta Mauss

ACTAR simulation with nptool

- Output data in "raw" format
 - \rightarrow Test existing analysis
- One step simulation
- Modular ancillary
- Human readable input file
- Simulation with other detectors
- Reproduce ID Plot
- Reproduce Resolution

Features

Cryogenic Target

Gaseous detector

Conclusion

Morfouace Matta Mauss

ACTAR simulation with nptool

- Output data in "raw" format
 - \rightarrow Test existing analysis
- One step simulation
- Modular ancillary
- Human readable input file
- Simulation with other detectors
- Reproduce ID Plot
- Reproduce Resolution

Features

Cryogenic Target

Gaseous detector

Conclusion

Morfouace Matta Mauss

ACTAR simulation with nptool

- Output data in "raw" format
 - \rightarrow Test existing analysis
- One step simulation
- Modular ancillary
- Human readable input file
- Simulation with other detectors
- Reproduce ID Plot
- Reproduce Resolution

Features

Cryogenic Target

Gaseous detector

Conclusion

Morfouace Matta Mauss

ACTAR simulation with nptool

- Output data in "raw" format
 - \rightarrow Test existing analysis
- One step simulation
- Modular ancillary
- Human readable input file
- Simulation with other detectors
- Reproduce ID Plot
- Reproduce Resolution

		Cryogenic Target	Conclusion ●○
Conclusio	n		

Gaseous detector and system

- Offers new tool for Geant4 simulation of Gaseous detector
- Offers out of the box tool for TPC analysis
- Cryogenic target simulation facility
- Cryogenic target analysis facility

Comming up

- Dali-Minos-Nebula
- Spede (D. Cox)
- Resonant scattering
- Multifragmentation
- Triggerless simulation

Adrien MATTA, for the nptool collaboration