Physics cases around shell closures with cryogenic targets

Andrea Gottardo

INFN-LNL, Italy

Shell structure: a quantitative description ?

PHYSICAL REVIEW

On Closed Shells in Nuclei. II

MARIA GOEPPERT MAYER Argonne National Laboratory and Department of Physics, University of Chicago, Chicago, Illinois February 4, 1949

Thanks are due to Enrico Fermi for the remark, "Is there any indication of spin-orbit coupling?" which was the origin of this paper.

APRIL 1, 1950

Nuclear Configurations in the Spin-Orbit Coupling Model. I. Empirical Evidence

VOLUME 78, NUMBER 1

Maria Goeppert Mayer

There is no adequate theoretical reason for the large observed value of the spin orbit coupling. The Thomas

J. Duflo et A. P. Zuker, Phys. Rev. C 59, R2347 (1999)

Extruder-Intruder shell gaps

Maybe three-body forces ? Maybe unbinding of upper shells ?

3-body interactions produce "naturally" overbinding of large j shell Phys. Rev. Lett. 90, 042502 (2003)

Journal of Physics: Conf. Series 1023 (2018) 012016

Or maybe is the unbinding of the higherlying shells creating the gap ?

Can we measure shell gaps ? N=50 case

Shell-gap from masses

Reduction of the N=50 spherical gap from N=51 isotones mass ?

M.-G. Porquet and O. Sorlin, Phys. Rev. C 85, 014307 (2012)

Shell-gap from spectroscopy

p-h states across N=50 in N=49 and N=50 isotones: minimum at Z=32

CONSTANT GAP

N=82

¹³²Sn

m_{11/2}

Clusters

Single-nucleon transfer as a probe of shell structure **f**_{5/2} **f**_{5/2} **h**_{9/2} h_{9/2} **p**_{1/2} $p_{3/2}$ **p**_{1/2} **f**_{7/2} **p**_{3/2} **J**7/2

60

50

40 Counts 00

N=82

133Sn

h_{11/2}

One-nucleon transfer populates mainly single-particle states

2.005 keV

1,561 keV

363 keV

Caveat: SF NOT an observable, many fragments

- SF are defined within a model: different models may yield different SF for same wave functions (Phys. Rev. C 92, 034313 (2015))
- Need of measuring small fragments of the force (what if unbound ?)
- Need of probing both particles and holes to get an idea of ESPE

Single vs. collective states after transfer

Always single-particle states?

- When adding/stripping one/two nucleons, the other fluid may also change due to isovector polarizability
- Ex: changing proton wave function in a (d,p) reaction
- Consequences on cross section estimation, hence SF extraction

Targets for radioactive beams

Cryogeinc targets

- Compact targets (thickness few mm, cold finger penetrating in the chamber)
- Thick targets (~ mg/cm²)

At the same time: - high-resolution γ -ray spectroscopy with high efficiency (10-20%):

- energy, angular distribution, polarity, lifetimes (?)
- **light ejectile spectroscopy** (p,d,t, ³He, α): ℓ transferred
- heavy ion spectroscopy: contamination, thickness control,
 - ℓ transferred, invariant mass for unbound states

Cryogenic targets

Gel-like targets: CHyMENE

Cryogenic target that extrudes a solid state paste for ¹H and ²H

- Thickness: several 10²⁰ atoms/cm²
- No windows needed
- Impossible for ³H (radioprotection)

Eur. Phys. J. A (2013) 49: 155

Cryogenic gas: ^{3,4}He

Cryogenic target in the gas phase but at low temperature: high density gas for ³He and ⁴He

- Thickness: 1-2 mg/cm², several 10²⁰ atoms/cm²
- windows needed: secondary reactions, energy straggling
- ³He very expensive

Physics case along N=28 (I)

Neutron observables understood

Excellent theory for neutron-space related quantities:

- confirming N=28 shell closure in ⁴⁶Ar
- SDPF interaction describes valancecore neutrons interaction very well
 - Z. Meisel et al. PRL 114, 022501 (2015)

Large discrepancy in B(E2)

Large discrepancy with the measured B(E2) value at N=28:

problem with the proton E2 contribution ?

A. Gade et al., PRC 68, 014302 (2003)

S. Calinescu et al., PRC 93, 044333 (2016)

⁴⁶Ar(³He,d)⁴⁷K proton pick-up reaction

Experimental setup

Setup

- ⁴⁶Ar beam: 2·10⁴ pps
 @10 MeV/u (SPIRAL
 1)
- Cryogenic ³He target: 3 mm-thick, T=8 K, P=1 atm MUGAST for deuterons detection
- AGATA for γ-ray spectroscopy
- VAMOS for helping in identification and spectra cleaning

Calculations of cross section with DWBA theory

State in ⁴⁶ Ar	Cross sections (mb)	Normalized SF	Deuterons/ week	Deuterons-γ/ week
1/2+	2.5	0.4	1100	-
3/2+	2.7	0.2	640	70

Fit on simulated curves: statistical errors < 10% on measured cross sections

Physics around N=50 (I)

Physics around N=50 (II)

Rapid decreasing of $s_{1/2}$ ESPE: continuum coupling ?

g_{7/2} behaviour: tensor force effects ?

Physics around N=50 (III)

Possible measurements around N=50

(d,p), (a,³He) for N=51

Transfer to N=51,49 isotones

- (d,p), (p,d) for $d_{5/2}$, $s_{1/2}$, $d_{3/2}$, $g_{7/2}$
- (a,³He) for $g_{7/2}$, $h_{11/2}$
- ⁸⁶Kr, ⁸⁴Se, ⁸²Ge feasible for example at SPES
- ⁸⁰Zn at the limit (10³ pps): no γ-ray spectroscopy ?

Shape coexistence

- (d,p) transfer on the isomeric 1/2⁺ state in ⁸¹Ge, ⁷⁹Zn beams for s_{1/2} state
- (t,p) 2n transfer on ⁸⁰Ge, ⁷⁸Zn beams
- Population of intruder 0⁺ states in N=50
 ⁸²Ge, ⁸⁰Zn
- SF can provide information on intruder states structure

Physics around N=82

(d,p), (α ,³He) for N=82 shell

Transfer to N=83 isotones

- (d,p) : ¹³³Sn, ¹³⁴Sn, ¹³³Sb, ¹³¹In
- (d,t) : ¹³¹Sn, ¹³⁴Sn, ¹³¹In
- (d,³He) : ¹³¹Sn, ¹³³Sn, ¹³¹In
- (t,p) : ¹³⁶Sn (di-neutron cluster)

Mengoni, Goasduff, LoI for SPES

-Evolution of ESPE above N=82 closure

-Pairing interaction in very exotic isotopes (¹³⁴Sn has the lowest pairing)

18/24

MINOS target @ RIKEN

Pygmy Dipole Resonance in the N=50, 82 region

Strong increase of PDR after N=50 in Ge, Zn, Ni linked to an increased skin thickness

S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90 (2013) 024303.

Pygmy Dipole Resonance : different probes

Different energy ranges

- low energy part: isoscalar character (neutron-skin oscillationsγ spectroscopy for angular distribution: firm multipole assigmenent
- high-energy states: isovector nature (transition towards the GDR)

IMPORTANCE of experimental investigation with different (complementary) probes!

Phys. Lett. B 738, 519 (2014)

Courtesy of F.C.L. Crespi

PDR Resonance

Coulomb Nuclear

30

30

3-

1-

Total

20

(x 10⁻¹)

20

Calculations based on semiclassical model, together with a **microscopic description of the internal structure** of the nuclei within the HF+RPA formalism

DWBA angular distributions for the system 94 Sr + α at 10 MeV/u incident energy calculated for the two low lying states 1– and 3– (lower panel) close in energy

FCL Crespi, E. Lanza, D. Mengoni, Lol for SPES

Adavantages of cryotargets for PDR

Gamma and particle spectroscopy

- Different probes (p,p'), (α,α')
- γ-ray spectroscopy for angular distribution: firm multipole assignement
- Particle spectroscopy: form factors

ACTAR

 Possibility of multipole particle decomposition for unbound states ?

Clustering studies

Cluster states studied with cryogenic a targets

- Molecular states predicted at high excitation energies
- Cluster states in light nuclei, like ¹⁰B, can be studied by (α, α') scattering
- Coincidence between the ⁴He recoiling particle and the ⁴He+⁶He cluster break-up fragments
- Invariant mass reconstruction in the 8-16 MeV excitation energy

I. Lombardo, LoI for SPES

Conclusions

- One, two-nucleon transfer to populate single-particle and more collective (ex: intruder) states.
- Cryogenic targets necessary to combine good thickness, gamma spectroscopy, light-particle spectroscopy and heavy-ion mass spectroscopy
- Physics case mainly around shell closures to investigate shell structure in exotic regions
- New opportunities to study the PDR in neutron-rich nuclei with different probes, overcoming typical experimental uncertainties
- Other phenomena like clustering are possible to be studied in light nuclei
- Nuclear astrophysics

Table 1. Gain in the number of scattering centers $N_{\rm at/cm^2}$ between H₂ and CH₂ targets for a given energy straggling $\sigma_{\rm E}$, and the resulting angular straggling σ_{Θ} . Calculations were done with the LISE code [12].

		$\frac{\rm Thickness}{(\mu m)}$	$\sigma_{\rm E} \ ({\rm keV}/u)$	$N_{\rm at/cm^2}10^{20}$	σ_{Θ} (mrad)
$^{1}\mathrm{H}\ 1\mathrm{MeV}$	H_2	50	8.9	2.2	13.9
	CH_2	9.26	8.9	0.7	24.9
$^{1}\mathrm{H}~5\mathrm{MeV}$	H_2	50	7.5	2.2	2.4
	CH_2	9.359	7.5	0.7	4.4
³ He 3 MeV	H_2	50	6.2	2.2	9.9
	CH_2	9.42	6.2	0.7	17.9

