

SpecMAT Spectroscopy of exotic nuclei in a Magnetic Active Target

Riccardo Raabe

KU Leuven, Instituut voor Kern- en Stralingsfysica

KU LEUVEN

Riccardo Raabe – KU Leuven

3He O

Physics goals

- What are the **forces driving the shell structure in nuclei and how do they change** in nuclei far from stability?
- What remains of the Z = 28 and N = 50 "magic numbers" in ⁷⁸Ni?
- Do we understand shape coexistence in nuclei, and what are the mechanisms controlling its appearance?

3He O

Shell evolution towards ⁷⁸Ni

 Migration of πf_{7/2}, πf_{5/2} as vg_{9/2} is filled (tensor interaction)

CO 7	20.7-	707-	71.7.	797.	797.	747.	757.	707.	777.	707.	70.7m		7	01.7m
602n	692n	702n	712n	722n	732n	742n	752n	762n	772n	782n	792n	80	5n	812n
67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79	Cu	80Cu
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Nï	
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
66Ni 65Co	67Ni 66Co	68Ni 67Co	69Ni 68Co	70Ni 69Co	71Ni 70Co	72Ni 71Co	73Ni 72Co	74Ni 73Co	75Ni 74Co	76Ni 75Co	77Ni	78	Ni	

K. Flanagan et al., PRL 103 (2009) 142501

FIG. 3. Energy of the lowest levels from experiment [2,5,6] compared to large-scale shell-model calculation [25].

KU LEUVEN

Riccardo Raabe - KU Leuven

3He O

SPECMAT CONTRACTOR European Research Cour Established by the European Commit

Shell evolution towards ⁷⁸Ni

 Migration of πf_{7/2}, πf_{5/2} as vg_{9/2} is filled (tensor interaction)

68Zn	69Zn	70Zn	71Zn	72Zn	73Zn	74Zn	75Zn	76Zn	77Zn	78Zn	79Zn	80	Zn	81Zn
67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79	Cu	80Cu
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
_														
		07.0	2 2.2	20 2	70.0	74.0	70.0	70.4	242	75.0				

KU LEUVEN

K. Flanagan et al., PRL 103 (2009) 142501

FIG. 3. Energy of the lowest levels from experiment [2,5,6] compared to large-scale shell-model calculation [25].

Riccardo Raabe – KU Leuven

3He O

SPECMAT Cerce European Research Counce Established by the European Commission

Shell evolution and shape coexistence

Y Tsunoda, T Otsuka et al., PRC 89 (2014) 031301

⁶⁸Ni

KU LEUVEN

Riccardo Raabe - KU Leuven

SpecMAT 3He O erc Shell evolution and shape coexistence

KU LEUVEN

Riccardo Raabe – KU Leuven

3He O

SpecMAT Control Contro

The n-deficient Pb region

B A Marsh et al., Nature Physics (2018)

KU LEUVEN

The n-deficient Pb region

Riccardo Raabe – KU Leuven

The n-deficient Pb region

Riccardo Raabe – KU Leuven

Study of the Pigmy Dipole Resonance

Low-energy dipole strength

- First observation in 1961
 γ rays from neutron capture
 G.A. Bartholomew, Annu. Rev. Nucl. Sci. 11 (1961) 259
- First use of "pygmy resonance" (PDR) J.S. Brzosko et al., Can. J. Phys 47 (1969) 2849
- Description as a collective excitation Mohan et al., Phys. Rev. C 3 (1971) 1740 "Three-Fluid Hydrodynamical Model of Nuclei": Neutron excess oscillates against the N=Z core
- Different experimental probes to investigate the isospin nature of these states

Figure A. Bracco et al., Eur. Phys. J. A 51 (2015) 99 Data from K. Govaert et al., Phys. Rev. C 57 (1998) 2229 and J. Endres et al., Phys. Rev. C 85 (2012) 064331

3He O

SpecMAT

erc

KU LEUVEN

Study of the Pigmy Dipole Resonance

D. Vretenar et al., J. Phys. G 35 (2008) 014039

Riccardo Raabe – KU Leuven

3He O

SpecMAT Control Contro

KU LEUVEN

Study of the Pigmy Dipole Resonance

- Isoscalar probe:
 (α,α') inelastic scattering
- SpecMAT:
 γ rays from decay of bound states

LOI I-194

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Study of the Pygmy Dipole Resonance using an Active Target

Cases: ⁹⁰Sr, ¹⁹⁴Hg, ^{146,148,150}Gd
 ≈10 MeV/nucleon

Riccardo Raabe – KU Leuven

The active-target method

Time-Projection Chamber (TPC) + gas is the target

- Full 3D track reconstruction
- High luminosity, keeping energy resolution
- Energy of stopped particles
 Particle identification
- Versatile: different gases, pressures, configurations ancillary detectors

SpecMAT:

- Magnetic field parallel to the beam direction
- Drift field parallel to magnetic field

The active-target method

γ -ray detection

- CeBr₃ scintillators: good efficiency and resolution
- Si photomultipliers

J. Diriken et al., PLB 736, 533 (2014) J. Diriken et al., PRC 91, 054321 (2015)

Status

Design: O. Poleshchuk, KU Leuven

- GET Electronics (2048 channels): purchased and commissioned
- Pad plane and field cage designed in CERN (EP-DT-DD MPT) to be ordered shortly
- Chamber finalized and ordered
- Scintillators + SiPMs purchased, commissioning ongoing 48x48x48 mm³
 Photopeak efficiency 8% at 1 MeV
 Nominal resolution 3.9% at 661 keV
 No degradation in 3-T magnetic field

Status

Design: O. Poleshchuk, KU Leuven

- GET Electronics (2048 channels): purchased and commissioned
- Pad plane and field cage designed in CERN (EP-DT-DD MPT) in production
- Chamber finalized in production
- Scintillators + SiPMs purchased, commissioning ongoing 48x48x48 mm³
 Photopeak efficiency 8% at 1 MeV
 Nominal resolution 3.9% at 661 keV
 No degradation in 3-T magnetic field

Status

- GET Electronics (2048 channels): purchased and commissioned
- Pad plane and field cage designed in CERN (EP-DT-DD MPT) in production
- Chamber finalized in production
- Scintillators + SiPMs purchased, commissioning ongoing 48x48x48 mm³
 Photopeak efficiency 8% at 1 MeV
 Nominal resolution 3.9% at 661 keV
 No degradation in 3-T magnetic field

Status

- GET Electronics (2048 channels): purchased and commissioned
- Pad plane and field cage designed in CERN (EP-DT-DD MPT) in production
- Chamber finalized in production
- Scintillators + SiPMs purchased, commissioning ongoing 48x48x48 mm³
 Photopeak efficiency 8% at 1 MeV Nominal resolution 3.9% at 661 keV No degradation in 3-T magnetic field

Design: O. Poleshchuk, KU Leuven

Simulations for: electric field, mechanical stress, gas flow

Status

- GET Electronics (2048 channels): purchased and commissioned
- Pad plane and field cage designed in CERN (EP-DT-DD MPT) in production
- Chamber finalized in production
- Scintillators + SiPMs purchased, commissioning ongoing 48x48x48 mm³
 Photopeak efficiency 8% at 1 MeV
 Nominal resolution 3.9% at 661 keV
 No degradation in 3-T magnetic field

Design: O. Poleshchuk, KU Leuven

Installation

- Installation through a platform and rails from the back of the ISS
- Cables (8m) running to the electronics racks outside the cage

Planning

Spring 2019: characterisation of the full system

- Characterisation of the γ-ray array
- Leak tests of the detector chamber
- Commissioning of the gas control system
- Tests of the electric field cage
- Characterisation of particle tracks

2019 Move to CERN

- Safety clearance
- Installation

3He 🔵

KU LEUVEN

Rare gases

- Main interest: ³He spectroscopy of n-deficient nuclei
- (³He,d) negative *Q*-value, backward angles
- (³He,⁴He) positive *Q*-value, forward angles
- Light recoils have very low energies!!

- Separated cylinder with rare gas
- Supporting structure, thin* foils??
- Equalized pressure
- * 3.6 μm mylar stops 350 keV deuterons and 900 keV alphas!

Riccardo Raabe – KU Leuven

3He 🔵

Acknowledgements

Thanks to the SpecMAT team!

A. Arokja Raj, H. De Witte, A. Mentana, O. Poleshchuk, J. Refsgaard, M. Renaud, J. Yang With us in the past: S. Ceruti, M. Babo, T. Marchi, C. Swartz

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 617156

KU LEUVEN

Riccardo Raabe – KU Leuven

KU LEUVEN

Riccardo Raabe – KU Leuven