Searching for Dark Energy with the LHC

Spyros Argyropoulos

Using LHC to look at

the dark universe

Big open problems

Dark Energy

The universe accelerates

Dark Matter

Galaxies have more matter than what we see

Baryon asymmetry

We don't see anti-matter in the universe

Can the LHC tell us anything about these problems?

Outline

Introduction

- cosmology & dark energy
- theory & experiment landscape
- why to search for DE at colliders

The DE model

- details of the model
- relation to other benchmark models

The ATLAS search for DE

- experimental analysis
- results
- interpretation

Next steps

The Higgs connection

• DE, DM and baryogenesis

4

INTRODUCTION

<u>Cosmology = metric + General Relativity</u>

Cosmology

Three important quantities:

- scale factor a: size of universe relative to a₀=1
- Hubble parameter: $H(t) \equiv \dot{a}(t)/a(t)$
- curvature: shape (closed K>0, flat K=0, open K<0)

<u>Cosmology = metric + General Relativity</u> Cosmology **Metric General Relativity** + $G_{\mu\nu} = 8\pi G T_{\mu\nu}$ $G_{\mu\nu} = G(g, g', g'')$ $T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu\nu}} = diag[\rho, p, p, p]$ $g_{\mu\nu} = a^2(d\tau^2) \operatorname{diag} \left[-1, \frac{1}{1 - Kr^2}, r^2, r^2 \sin^2 \theta \right]$ Friedmann equation: $H^2 = \frac{8\pi G}{3}\rho$

How does the universe evolve with time?
 matter determines expansion of universe
 important quantity: w=p/ρ

Cosmic expansion

$$H^{2} = \frac{8\pi G}{3}\rho \Rightarrow a(t) = \left(\frac{t}{t_{0}}\right)^{2/3(1+w)}$$

$$\rho = \rho_{0}a^{-3(1+w)}$$

• different evolution for different types of matter

Type of matter	Behaviour of scale factor
Relativistic (e.g. photons)	$w = 1/3 \Rightarrow a \propto t^{1/2} \Rightarrow \ddot{a} < 0$
Non-relativistic (e.g. DM, baryons)	$w = 0 \Rightarrow a \propto t^{2/3} \Rightarrow \ddot{a} < 0$
Curvature	$w = -1/3 \Rightarrow a \propto t \Rightarrow \ddot{a} = 0$
Violating SEC (e.g. scalar field)	$w < -1/3 \Rightarrow \ddot{a} > 0$

➡ so what is dark energy?

What is "Dark Energy"?

"Dark Energy": matter which leads to an accelerated expansion

Two prototypical models:

- scalar field
- cosmological constant Λ (constant energy density)

$$\rho \propto a^{-3(1+w)} \Rightarrow w = -1 \Rightarrow \rho_{\Lambda} \equiv \frac{\Lambda}{8\pi G}$$
$$a(t) \propto e^{\sqrt{\Lambda/3}t} \Rightarrow \ddot{a} \propto e^{\sqrt{\Lambda/3}t}$$

• $\Lambda \Rightarrow$ exponentially accelerated expansion

- Two periods of accelerating expansion in the history of the universe:
 - early time: inflation (slowly rolling inflaton)
 - late time: "dark energy"

How we know it exists

distance measurements

SN farther than expected

age of globular clusters

without DE: t_{universe} ~ 10 Gyr
 while age oldest clusters >11 Gyr

Effect of DE on CMB

DE = higher distance at higher redshifts

Perlmutter et al, Astrophys.J.517:565-586,1999

• CMB

- position of acoustic peaks
- late-time ISW effect

• BAO

angular distance vs redshift

• Large Scale Structure

structure formation slows down

What DE really is

• We don't really know!

• Measurements point towards a cosmological constant $w = -1.03 \pm 0.03$

[Planck 2018]

- The "cosmological constant problem"
 - from measurements: $\rho_{\Lambda} \simeq 10^{-48} \text{ GeV}^4$ • from QFT: $\rho_{vac} \sim \Lambda_{cut}^4 \text{ GeV}^4 \gtrsim 10^{12} \text{ GeV}^4$

• <u>New physics</u>: $G_{\mu\nu} = 8\pi G T_{\mu\nu}$

- Modified gravity:
 - higher order: e.g. f(R)
 - higher dimensions: e.g. brane-world models
- Modified matter content:
 - scalar: e.g. Horndeski
 - vector: e.g. Proca
 - tensor: e.g. e.g. massive gravity

⇒ 60 orders of magnitude off

Theory & experiment landscape

Schematic from here

Laboratory:

- torsion balance: Eöt-Wash [9,11]
- Casimir forces [9,11]
- Interferometry [9,11]
- Coupling to photons: CAST, CHASE [12,13]

Cosmology/Astro:

- SN/BAO (distance/redshift relations) [14]
- Structure growth [14]
- Lensing [14]
- Stellar burning [9]
- Multi-messenger signals with GW (new!) [10]

- The landscape of viable models is enormous!
- Need multiple experiments to provide as much information as possible
- BUT many questions remain open ...

Dark Energy = accelerated expansion of the universe

- The biggest unanswered question in cosmology and particle physics
 - new particle or modified gravity?
 - constant or dynamic?
 - interacting or not?
 - microscopic nature?

• Vast landscape of models with no leading candidate theory

Why to search for DE at colliders

- Interaction of DE with SM particles arises naturally in many models
 - Screening of 5th forces: escape detection at high density regions \rightarrow DE must "feel" the density of SM matter \rightarrow non-zero DE/SM interaction
 - ⇒ DE can be produced and constrained at colliders [1]
- Dark degeneracy
 - modified gravity models can lead to same phenomenology as DE

$$\tilde{G}_{\mu\nu} = 8\pi G \; \tilde{T}_{\mu\nu}$$

⇒ need particle physics to distinguish modified gravity from dark energy [2]

- Complementarity with non-collider experiments
 - ⇒ collider experiments sensitive to multitude of signatures
 - ⇒ access different parts of parameter space
 - \Rightarrow investigate microscopic nature of DE

So far no direct search by collider experiments

AN EFT MODEL OF SCALAR DE

The model

- New model based on Effective Field Theory [Brax, Burrage, Englert, Spannowsky 3]
- Using framework of Horndeski theories
 (most general theories with scalar field with 2nd order eq. of motion)
 ⇒ assumption: DE couples to matter
 - ⇒ independent of microscopic models offers general framework to study DE

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{M^{d-4}} \mathcal{O}^{(d)} + \frac{1}{2} m^2 \phi^2$$

• Idea: extend SM Lagrangian with extra operators suppressed by new physics scale M

⇒ measure M - translate to the parameters of UV models

EFT operators

• 2 classes of operators: ⇒ shift symmetry invariant

 \Rightarrow shift symmetry breaking (ϕ can decay to SM fields - not considered here)

- 9 shift-symmetric operators:
 - kinetic conformal couplings \Rightarrow studied here

- disformal couplings
- kinetic term for DE field
- Galileons
- Combination of these operators appear in cosmological/non-collider searches
 - Gravitational waves/CMB [5] $\mathcal{L}_7, \mathcal{L}_8$
 - Atom interferometers/Chameleon search [6] $\frac{1}{2}\mathcal{L}_{6,1} + \mathcal{L}_{10,1} + \mathcal{L}_{11,1}$
 - Torsion pendulum search for symmetron DE [7] $-\frac{1}{2}\mathcal{L}_{6,1} \frac{1}{2}\mathcal{L}_{10,2} + \frac{1}{2}\mathcal{L}_{11,2} \frac{1}{4!}\mathcal{L}_{11,4}$

Conformal & disformal couplings - signatures

Study two lowest-dimension operators:

 $\mathcal{L}_1 = \frac{\partial_\mu \phi \partial^\mu \phi}{M^4} T_\nu^\nu \qquad \text{(kinetic) conformal coupling} \\ \Rightarrow \text{ enhanced for heavy final}$ ⇒ enhanced for heavy final states

disformal coupling ⇒ enhanced for high momentum

- Top final states: enhanced sensitivity to L₁ due to high top mass
- Mono-jet final states: enhanced sensitivity to L₂ due to high momentum transfers
- DE particle φ stable \Rightarrow missing energy
 - \Rightarrow Signatures: tt+ E_T^{miss} , jet+ E_T^{miss}

THE SEARCH

ATL-PHYS-PUB-2018-008

DE signal simulation

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{M^{d-4}} \mathcal{O}^{(d)} + \frac{1}{2} m^2 \phi^2$$

- Set c_i=1 for one operator at a time
 ⇒ express constraints only as a function of M
- m_{ϕ} must be small to get correct equation of state \Rightarrow set m_{ϕ} =0.1 GeV (negligible wrt LHC scales)
 - \Rightarrow kinematics and cross-section independent of m_{ϕ}
- LO approximation: single insertion of EFT operator
 ⇒ kinematics independent of M
 - ⇒ M only affects normalisation

How signal events look like

Same signatures as DM searches (both DM and DE give MET signature)
tt+MET: also same signature as stop search - more sensitive than

tt+DM

tt+DM

ω

Much higher MET in general than DM

- Re-interpret results of:
 - L1: stop search [ATLAS, JHEP 12 (2017) 085]
 - L₂: mono-jet DM search [ATLAS, JHEP 01 (2018) 126]

Brax et al., Phys. Rev. D 94, 084054 (2016)

Analysis

• Dataset: 36 fb⁻¹ of pp collisions , $\sqrt{s} = 13$ TeV

• tt+ E_T^{miss}

- 3 channels studied (0/1/2L) 0L found to be the most sensitive
- all hadronic top decays: b-jets, 0 leptons, high E_T^{miss} 3 signal regions
- mono-jet
 - high p_T jet + high E_T^{miss}
- Background + signal normalisation determined by a likelihood fit to data

Stransverse mass in tt+E_T^{miss} analysis

E_T^{miss} in mono-jet analysis

Limits on DE production

• No signal excess \Rightarrow set upper limit on production cross-section for L₁, L₂

Channel	Operator	Lower limits on M [GeV]					
Channel Operation	Operator	Observed	Expected	$+2\sigma$	+1 σ	-1σ	-2σ
$t\bar{t} + E_{\mathrm{T}}^{\mathrm{miss}}$	\mathcal{L}_1	309^{+19}_{-24}	313	284	299	326	338
Mono-jet	\mathcal{L}_2	1260^{+50}_{-60}	1350	1200	1280	1400	1450

Upper limit on cross-section for L₁

Upper limit on cross-section for L₂

INTERPRETATION

Validity of EFT model

- EFT approximation valid when momentum transfer not enough to resolve the interaction: $Q_{tr} \ll M$
- In practice use

$$Q_{\rm tr} < g_* M$$

 g_{\star} : effective coupling related to UV completion of EFT ($g_{\star} < 4\pi$) M : lower limit on EFT suppression scale

Momentum transfer

- UV completion unknown ⇒ use partonic c.o.m. energy
- Scan g_{*} and evaluate R: fraction of events that satisfy validity criterion
- Rescale limit using (dim-8 operators)

$$M_{\rm resc} = R^{1/8} M$$

Interpretation

Exclusion limit vs coupling for L1

Exclusion limit vs coupling for L₂

No sensitivity yet to weakly coupled models for L₁:

- very high momentum transfers due to high top mass
- should improve with higher data/more sensitive search

Sensitivity extends to lower couplings for L₂:

- higher limit
- lower momentum transfers wrt tt+ET^{miss}

Comparison with other experiments

- Disformal coupling analysis already performed for non-collider probes [9]
 - supernovae, atom spectroscopy, fifth force experiments
- Momentum transfers in these processes are small so we can assume that EFT limit is completely valid and compare the limits:

Colliders several orders of magnitude more sensitive to disformal couplings!

NEXT STEPS

Things for the future

- optimise search strategy (e.g. adding dedicated selections)
- probe more final states => stronger constraints / enlarged EFT validity

• more operators:

- additional operators can alter E_T^{miss} shape
- complementary with non-collider searches?

• theorists:

- any signatures that we are missing?
- translate constraints into specific benchmark models (?)
- simplified UV models (?)

Effect of additional operators

Brax et al., Phys. Rev. D 94, 084054 (2016)

THE HIGGS CONNECTION

Why final states with Higgs bosons are interesting

One final state with many interpretations: Higgs + MET (Z→vv, DM, DE)

- High mass ⇒ enhanced conformal coupling
- Scalar might play special role in cosmology (Higgs potential) [15]
- Smoking gun signal for electroweak baryogenesis (Higgs potential) [16]
- New particle portal to hidden sector
 - Rich phenomenology in terms of DM/DE models [17]

EW baryogenesis

Final words

✓ strong motivation for DE search @ colliders

✓ first time experimental collaboration sets limits on DE using collider data

✓ colliders more sensitive than other experiments for certain couplings

Dark Energy might be more than 1 particle or more than 1 effect or even something completely unexpected The best approach to understand it is to have multiple approaches...

References

[1] A. Joyce, et al, Phys. Rept. 568 (2015) 1, arXiv: 1407.0059 [astro-ph.CO] , P. Brax, Rep. Prog. Phys., 81 (2018) 016902

[2] Kunz PRD 80 (2009) 123001, Kunz, Sapone PRL 98 (2007) 121301

[3] P. Brax et al, Phys. Rev. D94 084054 (2016)

[4] P. Brax, P. Valageas, Phys. Rev. D 95, 043515 (2017)

[5] Sakstein, Jain, Phys. Rev. Lett. 119, 251303 (2017)

[6] Burrage, Copeland, Hinds, JCAP 03 (2015) 042

[7] Upadhye, PRL 110 (2013) 031301

[9] Brax, Burrage, Phys. Rev. D 90, 104009 (2014)

[10] LIGO/Virgo Phys. Rev. Lett. 119 (2017) 161101 ; LIGO/VIRGO Astrophys. J. 848 (2017) L12

[11] Burrage, Sakstein, JCAP11 (2016) 045

[12] CHASE, Science 349 (2015) 849

[13] CAST, Phys. Lett. B749 (2015) 172

[14] <u>Weinberg et al, Phys. Rept. 430 (2013) 87</u>

[15] Bezrukov, Shaposhnikov, Phys.Lett. B659 (2008) 703-706,

[16] Dorsch et al, Phys. Rev. Lett. 113 (2014) 211802, ATLAS PLB 783 (2018) 392

[17] <u>Burrage et al., arXiv:1804.07180</u>

Shift symmetric models [4]

- Nearly massless field needed for cosmic acceleration
 - model with complex scalar field Φ with global U(1) symmetry
 - Goldstone mode ϕ below symmetry breaking scale f (ϕ plays role of DE)

$$S = \int d^4x \sqrt{-\tilde{g}} \left[-\tilde{g}^{\mu\nu} \partial_\mu \bar{\Phi} \partial_\nu \Phi - V(|\Phi|^2) \right]$$
$$\Phi = f e^{i\phi/(\sqrt{2}f)}$$

- Residual symmetry in the broken phase ⇒ shift symmetry
 - forbids Yukawa interactions of DE field with SM matter

Event selection

tt+E_Tmiss

Variable	Region			
Vallable	SRA_TT	SRA_TW	SRA_T0	
N ^{jet}	\geq 4 within $ \eta < 2.7$			
N ^{b-jet}	≥ 2			
$P_T^{\rm jet}$	> 80, 80, 40, 40 GeV			
$m_{\text{jet},R=1.2}^0$	> 120 GeV			
$m_{jet,R=1.2}^{1}$	> 120 GeV	[60, 120] GeV	< 60 GeV	
$m_T^{b,\min}$	> 200 GeV			
N _{b-jet}	≥ 2			
τ -veto	yes			
$ \Delta\phi(\text{jet}^{0,1,2},\mathbf{p}_T^{\text{miss}}) $	> 0.4			
$m_{\text{jet},R=0.8}^0$	> 60 GeV			
$\Delta R(b, b)$	>1 -			
$m_{T2}^{\chi^2}$	> 400 GeV	> 400 GeV	> 500 GeV	
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 400 GeV	> 500 GeV	> 550 GeV	

Mono-jet

Iterative limit rescaling

• Taken from <u>ATL-PHYS-PUB-2014-007</u>

• Start with nominal expected limit assuming 100% validity

- Until $R_i = 1$ or 0
 - Calculate $Q_{tr}^{max}(i) = 4\pi M_{in}(i) = 4\pi M_{out}(i-1)$
 - Calculate $R_i = N(Q_{tr} < Q_{tr}^{max}(i))/N(Qtr < Q_{tr}^{max}(i-1))$
 - Evaluate $M_{out}(i) = R_{tot}^{1/8} \cdot M_{in}(i)$
- Determine $M_{resc} = (\Pi R_i)^{1/8} \cdot M_{in}$

Example for L _{2 with} g+=4				
Min	Q _{tr} max(i)	Q _{tr} max(i-1)	Ri	Mout
1263	5052	13000	0.83	1234
1234	4937	5052	0.98	1231
1231	4924	4937	1	1231

Operators

Kinetic	$\mathcal{L}_1 = \frac{\partial_\mu \phi \partial^\mu \phi}{M^4} T^\nu_\nu$
couplings	$\mathcal{L}_{3,n} = \left(\frac{\partial_{\mu}\phi\partial^{\mu}\phi}{M^4}\right)^n T_{\nu}^{\nu}$
	$\mathcal{L}_2 = \frac{\partial_\mu \phi \partial_\nu \phi}{M^4} T^{\mu\nu}$
Disformal couplings	$\mathcal{L}_{4,n} = \left(\frac{\partial_{\alpha}\phi\partial^{\alpha}\phi}{M^4}\right)^n \frac{\partial_{\mu}\phi\partial_{\nu}\phi}{M^4} T^{\mu\nu}$
	$\mathcal{L}_{5,n-1} = \frac{1}{M^{4n}} \partial_{\alpha_1} \phi \partial_{\beta_1} \phi \cdots \partial_{\alpha_n} \phi \partial_{\beta_n} \phi \frac{2^{n-1}}{\sqrt{-g}} \frac{\partial^{n-1}(\sqrt{-g}T^{\alpha_1\beta_1})}{\partial g_{\alpha_2\beta_2} \cdots \partial g_{\alpha_n\beta_n}}$
DE kinetic term	$\mathcal{L}_{6,n} = \frac{(\partial_{\mu}\phi\partial^{\mu}\phi)^n}{M^{4(n-1)}}$
Galileons	$\mathcal{L}_7 = \frac{1}{M^3} \partial_\mu \phi \partial^\mu \phi \Box \phi$
	$\mathcal{L}_8 = \frac{1}{M^6} \partial_\mu \phi \partial^\mu \phi [2(\Box \phi)^2 - 2D_\alpha D_\beta \phi D^\beta D^\alpha \phi]$
	$\mathcal{L}_9 = \frac{1}{M^9} \partial_\mu \phi \partial^\mu \phi [(\Box \phi)^3 - 3(\Box \phi) D_\alpha D_\beta \phi D^\beta D^\alpha \phi + 2D_\alpha D^\beta \phi D_\beta D^\gamma \phi D_\gamma D^\alpha \phi]$

Limits on disformal coupling from other sources

Source of bound	Lower bound on M in GeV	Environment	Discussed in Section
Unitarity at the LHC	30	Lab. vac.	3
CMS mono-lepton	120	Lab. vac.	3
CMS mono-photon	490	Lab. vac.	3
Torsion Balance	$7 imes 10^{-5}$	Lab. vac.	4.1
Casimir effect	0.1	Lab. vac.	5.1
Hydrogen spectroscopy	0.2	Lab. vac.	6
Neutron scattering	0.03	Lab. vac.	7
Bremsstrahlung	4×10^{-2}	Sun	8.3
	0.18	Horizontal Branch	8.3
Compton Scattering	0.24	Sun	8.4
	0.81	Horizontal Branch	8.4
Primakov	4×10^{-2}	Sun	8.5
	0.35	Horizontal Branch	8.5
Pion exchange	~ 92	SN1987a	8.6

Brax, Burrage, Phys. Rev. D 90, 104009 (2014)

Comparing limits

Burrage, Sakstein JCAP 11 (2016) 045

plot here shows constraints on chameleons:

$$\mathcal{L} = \frac{1}{2} \mathcal{L}_{6,1} + \mathcal{L}_{10,1} + \mathcal{L}_{11,-n}$$
$$= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{M_{11}^{4+n}}{\phi^{n}} + \frac{\phi T^{\mu}_{\mu}}{M_{10}}$$

 does it make sense to have something similar for M₁, M₂ including collider and non-collider experiments?