
D. Boutigny, S. Elles

LAPP/CNRS/IN2P3, Annecy

Accès aux données - Qserv

LSST France - APC - Novembre 2018

Outline  Qserv Database for the LSTT Stack software

from LSST datasets/catalogs to the Qserv database

2

From LSST datasets/catalogs to the Qserv database

Qserv DB access tools
developed by Qserv team

Qserv is developed at SLAC + IPAC
Design optimized for astronomical queries (parallel distributed SQL database)

SQL DB structure
defned in collaboration

with the Stack developers &
physicists

CC-IN2P3 computing
infrastructure

Qserv cluster based on
Kubernetes

Starting point :

develop a tool to ingest the LSST stack
datasets/catalogs into a Qserv DB

Target

➊
➋

➍

Stack - cluster package
Stack catalog browser

- DRPtools -

➌

asynchronous process (parallelisation)
ensure data integrity
deals properly with the error-recovery

Guidelines

with the help of LPC Clermont
Fabrice Jammes

with the help of F. Jammes,
F. Wernli and F. Hernandez

developed by N.Chotard

3

Data ingestion

 a prototype is available

Kubernetes Qserv infrastucture - CC IN2P3

Qserv infrastructure
(based ond docker machines)

master pod
worker 1

worker 2

worker 24

/sps/lsst

Qserv DB
 sqlite3
task DB

 shared data
directory

step 1:
split the ingestion process into
subtasks based on flter-tract-patch
value sets

execute the
subtasks and
populate the

Qserv DB

step 2:

parallel data ingestion vs subtasks
- read input data with the Stack butler
- create and store local data fles
- mark subtask as ready to be uploaded

2 python scripts
(infnite loop running as daemon)

synchronized by a sqlite3 local DB

step 0:

defne the dataset to be uploaded

dataloader pod

...

Kubernetes Qserv infrastructure
1 master + 24 workers
+ a dataloader pod that coordinates the data ingestion

4

Data ingestion - current status

Qserv data ingestion process based on Kubernetes is operationnal

DB structure is configurable through yaml fille
• DB table definition, parameters to be uploaded, …
• Director table (that defines the way the sky is mapped into chunks)

Runs in parallel mode to avoid pods to be heavy loaded

No performance test made yet (load test, timing, …)

Script/library to access the Qserv DB is available (from the CC interactive machines)

 Requests are built following the mysql formalism
Describe the structure of a given table
python qserv_test_query.py --db qservTest_case120_qserv --request "describe deepCoadd_meas;"

Filter defined in deepCoadd_meas
python qserv_test_query.py --db qservTest_case120_qserv --request "select distinct filter,tract,patch from deepCoadd_meas;"

Number of entries in a given table
python qserv_test_query.py --db qservTest_case120_qserv --request "select count(*) from deepCoadd_meas;"

Current issues :

● Kubernetes seems quite sensitive to memory overload, pods can be killed
without warning : using the cvmfs software releases is currently a problem

 ⇒ difficult to debug because the crashes are not reproducible
● Qserv HTTP requests response size is underestimated, especially when the

number of parameters defined in a table grows (Run.1.1 => 845
parameters)

 ⇒ to be solved soon - Qserv team
problem solved by A.

Salnikov

in progress

5

Data ingestion - current status

Script to acces the Qserv DB is available (from the CC interactive machines)

MACSJ2243.3-0935 dataset is available in the DB
 ⇒ to be used to validate the ingestion process

The Qserv DB query library uses the DRPtool & Qservi tools developed by N.
Chotard to access data through the Stack butler

 straightforward to switch from analysis using the butler to Qserv queries

Switch to a new CC-IN2P3 Kubernetes infrastructure - provided by F. Jammes
  operation planned for Nov/Dec 2018

Upload larger data catalogs to create a Qserv analysis testing DB.
Next step : upload a Run1.2 dataset (see “current issues” in previous slide)

Next steps :

first trial with a reduced number of
parameters

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

