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Current cosmology questions

Credit : NASA

• What is the nature of dark
matter ?

• What is the nature of dark
energy ?

• Is it "dark energy" arising
from quantum fluctuations
in the vacuum, or is it new
gravitational physics ?
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Supernovae Ia as cosmological probe

History of the Universe

Dark energy causes the universal 
expansion to accelerate

Recent observations of supernovae 
have produced a value for an 
acceleration that implies a universe 
that is about 70 % dark energy

High-z

First proof with supernovae Ia
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The era of Big Data

1924

1989

2008

2018

2032

2027

Henry Drapper Catalog (0.2 Million)

Guide Star Catalog (20 Million)

SDSS (230 Million)

Dark Energy Survey (400 Million)

Euclid (10 billion)

Large Synoptic Survey Telescope (37 billion)

4



PELICAN

Johanna Pas-
quet

(CPPM)

General
Introduction

Issues for the
classification
The problem of
representativeness

Classification
of light curves
Architecture and
data

Results

SPCC

LSST

SDSS

Conclusion

Difficulties for the classification
Many factors degrade the performance of machine learning
algorithms:

Small training databases

Data can be sparse with an irregular 
sampling

Non-representativeness between 
the training and the test databases

Training database

Test database
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The spectroscopic follow-up

galaxy

Identify and measure the redshift of a galaxy

Supernovae 

Determine the nature of an observed object
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Limitation of the spectroscopic
follow-up

Observation with an hypothetic 8 m class telescope with a
limiting i-band magnitude of 23.5

Efficient 
spectroscopy

Impossible 
spectroscopy
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Non-representativeness between
the training and test databases

The non-representativeness of the databases, which is a
problem of mismatch, is critical for machine learning process.
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The main survey and the deep
fields of LSST

Wide Fast Deep fields (WFD)

Deep Drilling Fields (DDF)
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Comparison of light curves

DDF light curve WFD light curve
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A training on simulated data and a
testing on real data
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PELICAN: a deeP architecturE for the LIght Curve ANalysis
(Johanna Pasquet, Jérôme Pasquet, Marc Chaumont and Dominique Fouchez)

Key elements :

1 a complex Deep Learning architecture to classify light
curves of supernovae

2 trained on a small and biased training database
3 overcome the problem of non-representativeness between

the training and the test databases
4 deal with the sparsity of data and the difference of

sampling and noise

The ability of PELICAN to deal with the different causes of
non-representativeness between the training and test databases,
and its robustness against survey properties and observational
conditions, put it on the forefront of the light curves
classification tools for the LSST era.
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Different databases

The Supernova Photometric Classification Challenge in 2010 (SPCC, Kessler et al.)

Small training database (1,103 light curves)

Non-representativeness between the training and the test 
databases due to the limitation of the spectroscopic follow-up

LSST simulated data 

Small training database (until 500 light curves)

Non-representativeness between the training and the test 
databases due to the limitation of the spectroscopic follow-up

Non-representativeness of the sampling and noise between 
main survey and deep fields

SDSS-II Supernova Survey Data (Frieman et al. 2008; Sako et al. 2008)

Non-representativeness between the training (simulated data) and the test databases (real 
data)
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The SPCC challenge
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PELICAN with redshift (0.937)
SALT2+BDTs (0.818)
SALT2+BDTs with redshift (0.855)
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• We compared our results to BDTs classifier + SALT2 features
as it is the best combination in Lochner et al. (2016)

• PELICAN obtains an accuracy of 0.856 and an AUC of 0.934
which outperforms BDTs+SALT2 method which reaches 0.705
and 0.818
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LSST simulated data
Two methodologies:

1 A training and
a test on deep
fields (DDF)

2 A training on
deep fields
and a test on
the main
survey (WFD)

DDF light curve

WFD light curve
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Results on DDF

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

PELICAN - Train 10k Test 14k (0.998)
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PELICAN - Train 5k Test 5k (0.994)
SALT2+BDTs - Train 5k Test 5k (0.886)

PELICAN - Train 2k Test 2k (0.984)
SALT2+BDTs - Train 2k Test 2k (0.882)
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Results on WFD
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PELICAN - Train 2k Test 15k (0.974)
SALT2+BDTs - Train 2k Test 15k (0.765)

PELICAN - Train 3k Test 40k (0.984)
SALT2+BDTs - Train 3k Test 40k (0.752)

PELICAN - Train 10k Test 80k (0.992)
SALT2+BDTs - Train 10k Test 80k (0.760)
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Further analysis of the behaviour
of PELICAN
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SDSS data
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Summary

Era of Big data

The future surveys will deliver multi-band 
photometry for billions of sources

Many issues for the classification 
algorithms

Small size of the training database due to the 
limitation of the spectroscopic follow-up

Several problems of representativeness 

Nature of data : sparse with an irregular 
sampling

New solutions for the classification of light curves

 PELICAN obtained the best performance ever achieved with a non-representative training 
database of the SPCC challenge

PELICAN is able to significantly remove several types of non-representativeness between the 
training and the test databases due to :

   the limit in brightness and redshift of the spectroscopically confirmed data

   the different observational strategies

   the difficulty of simulated data to reproduce perfectly real data

PELICAN can deal with the data that are sparse, with an irregular sampling
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Overfitting of missing data (zero values)
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Projection of features
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