Johanna Pasquet

Context and motivations

- Use of photoz in Cosmology Estimate photoz
- State of the art
- Deep Learning

Results

- The data DL networl
- Summary

Deep learning approach to predict photometric redshifts of galaxies in the Sloan Digital Sky Survey DR12

Johanna Pasquet

Centre de Physique des Particules de Marseille

LSST France

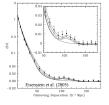
7 November, 2018

Johanna Pasquet

Context and motivations

Use of photoz in Cosmology

Estimate photoz State of the art Deep Learning

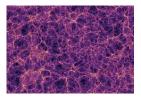

Results

- The data DL network
- Summary

Need accurate redshits for cosmology

Reliable redshifts are necessary to constrain the dark energy equation-of-state and to study the large scale structure of the universe

 Baryonic Acoustic Oscillations


Weak lensing

Strong gravitational lensing around galaxy cluster CL0024+17

Credit : NASA/ESA/M.J. Jee (John Hopkins University)

Cosmic web

Results of a digital simulation showing the large-scale distribution of matter, with filaments and knots.

Credit: V.Springel, Max-Planck Institut für Astrophysik, Garching bei München

Johanna Pasquet

Context and motivations

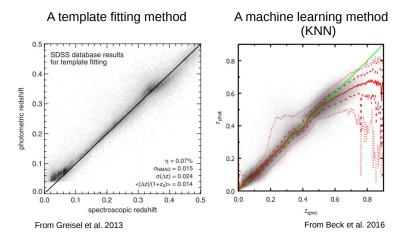
Use of photoz ir Cosmology

Estimate photoz

State of the art

Deep Learning

Results


The data DL network Our results

Summary

Existing methods

A D > A P > A D > A D >

э

Preliminary results with Deep Learning methods (Hoyle 2016, D'Isanto 2018)

Johanna Pasquet

Context and motivations

- Use of photoz ir Cosmology
- Estimate photoz
- State of the art

Deep Learning

Results

- The data DL network
- -

Photometric redshifts with Deep Learning Photometric redshifts from SDSS images using a Convolutional Neural Network (J. Pasquet, E. Bertin, M. Treyer, S. Arnouts and D. Fouchez)

 $arxiv: \ 1806.06607, \ code \ available \ at: \ https://github.com/jpasquet/Photoz$

Key elements :

- 1. A representative and a complete training database with r-band magnitude \leq 17.8 and redshift, z \leq 0.4 (516,525 galaxies)
- 2. Photoz values + associated Probability Distribution Functions
- 3. Photoz immune to $\ensuremath{\mathsf{IQ}}$ variations and neighbours contamination
- 4. A dedicated Neural Network architecture

Results obtained :

Clear improvements compared to other methods!

Johanna Pasquet

Context and motivations

Use of photoz in Cosmology

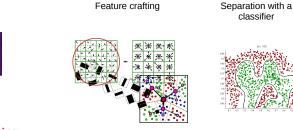
Estimate photoz

State of the art

Deep Learning

Results

The data DL network


Our results

Summary

Why use Deep Learning methods?

Classical methods

Input data

Deep learning

Input data

Feature learning

The best feature space representation is found by the network

Johanna Pasquet

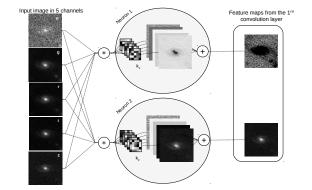
Context and motivations

Use of photoz ir Cosmology

Estimate photoz

Deep Learning

Results


The data

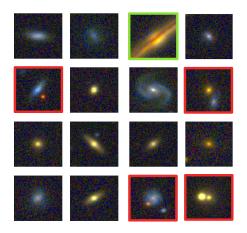
DL network

Our results

Summary

The Convolutional neural network (CNN)

Johanna Pasquet


Context and motivations

- Use of photoz ir Cosmology
- Estimate photoz
- State of the art
- Deep Learning

Results

- The data
- DL network
- Our results
- Summary

Input SDSS galaxy images transmitted to the CNN

- large galaxies

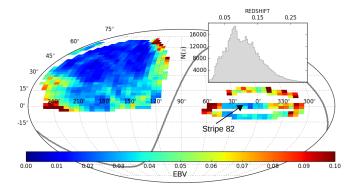
- crowded images

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Johanna Pasquet

Context and motivations

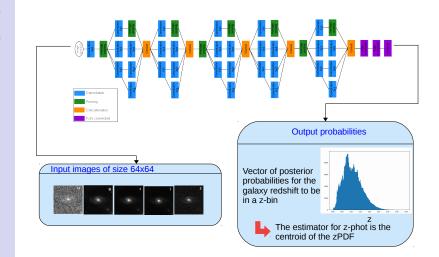
- Use of photoz ir Cosmology
- Estimate photoz
- State of the art
- Deep Learning


Results

The data

- DL network Our results
- Summary

Main Galaxy Sample SDSS


A multi-band imaging and spectroscopic redshift survey

Johanna Pasquet

DL network

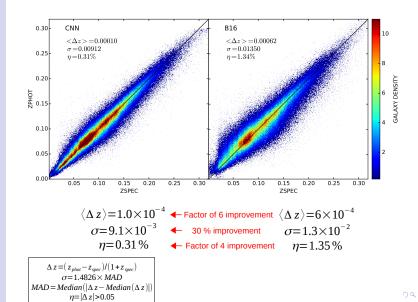
Our architecture

Johanna Pasquet

Context and motivations

Use of photoz ir Cosmology Estimate photoz

Deep Learning


Results

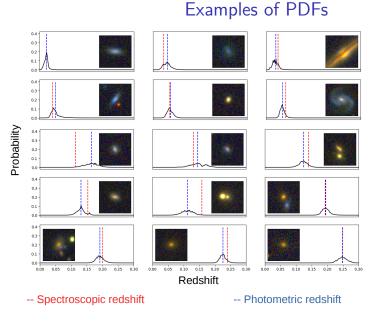
The data DL network

Our results

Summary

Results of the method

10


Johanna Pasquet

Context and motivations

- Use of photoz i Cosmology
- Estimate photoz
- State of the art

Results

- The data DL network
- Our results
- Summary

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

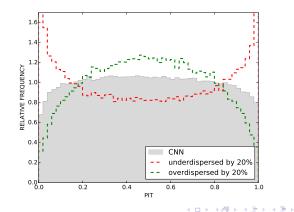
11

Johanna Pasquet

Context and motivations

- Use of photoz ir Cosmology
- Estimate photoz
- State of the art
- Deep Learning

Results


- The data
- DL network
- Our results

Summary

Assess the prediction quality of our PDFs

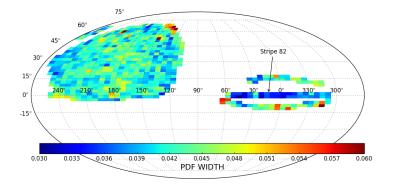
The PIT statistic (Dawid 1984) is based on the histogram of the cumulative probabilities at the true value. For galaxy *i* with spectroscopic redshift z_i in the test sample :

$$\operatorname{PIT}_{i} = \int_{-\infty}^{z_{i}} PDF_{i}(z) dz$$

Johanna Pasquet

Context and motivations

- Use of photoz ir Cosmology Estimate photoz
- State of the art


Results

- The data
- DL network
- Our results

Summary

Impact of Signal-to-Noise Ratio (SNR) on widths of PDFs

The Stripe 82 region, which combines repeated observations of the same part of the sky, gives us the opportunity to look into the impact of ${\sf SNR}$

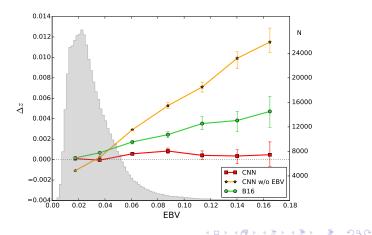
Johanna Pasquet

Context and motivations

Use of photoz in Cosmology Estimate photoz State of the art

Results

The data


DL networl

Our results

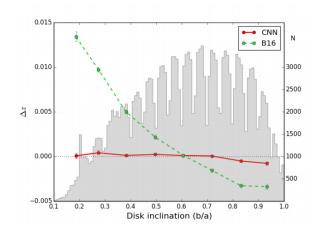
Summary

Impact of the extinction of our Galaxy on photometric redshifts

Our method tends to overestimate redshifts in obscured regions (confusing galactic dust attenuation with redshift dimming), unless $E_{(B-V)}$ is used for training

Johanna Pasquet

Context and motivations


- Use of photoz ir Cosmology Estimate photoz
- State of the art
- Deep Learning

Results

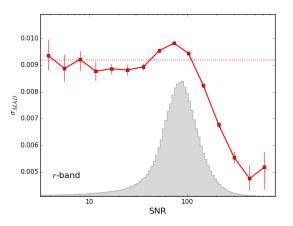
- The data
- DL network
- Our results
- Summary

Impact of the disk inclination of galaxies on photometric redshifts

Our method automatically corrects for galactic dust reddening which increases with disk inclination

Johanna Pasquet

Context and motivations


- Use of photoz ir Cosmology
- Estimate photoz
- Doon Loorning

Results

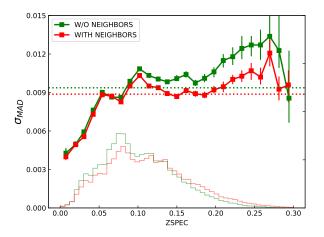
- The data
- DL network
- Our results
- Summary

Impact of the SNR on the performance

 σ_{MAD} decreases with the signal-to-noise ratio (SNR), achieving values below 0.007 for SNR > 100, as in the deep stacked region of Stripe 82

Johanna Pasquet

Context and motivations


- Use of photoz ir Cosmology
- Estimate photoz
- State of the art
- Deep Learning

Results

- The data
- DL network
- Our results
- Summary

Neighboring galaxies

The MAD deviation is significantly improved for galaxies with fainter neighbors (43%) compared to those without

Johanna Pasquet

Summary results

Context and motivations

- Use of photoz in Cosmology
- Estimate photoz
- State of the art
- Deep Learning

Results

- The data
- DL network
- Our results
- Summary

Trial	training sample size	bias	σ	η
Training with 80% of the dataset	393,219			
Full test sample		0.00010	0.00912	0.31
(B16)		(0.00062)	(0.01350)	(1.34)
Widest 20% of PDFs		0.00005	0.00789	0.06
Stripe 82 only		-0.00009	0.00727	0.34
Stripe 82 with widest 20% of PDFs removed		0.00004	0.00635	0.09
Training with 50% of the dataset*	250,000	0.00007	0.00910	0.29
Training with 20% of the dataset	99,001	-0.00001	0.00914	0.30
Training with 2% of the dataset	10,100	-0.00017	0.01433	1.26
Training and testing on Stripe 82	15,771	-0.00002	0.00795	0.38

Summary

Photoz

Johanna Pasquet

Context and motivations

- Use of photoz in Cosmology
- Estimate photoz
- State of the art

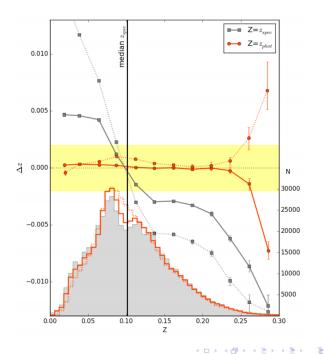
Results

- The data
- Our results

Summary

- We developed a **Deep Convolutional Neural Network** (CNN) used as a classifier to estimate photometric redshifts and their associated PDFs.
- Our work shows significant improvements for:
 - the dispersion of photometric redshifts, σ_{MAD}
 - the PDFs that are well calibrated
 - **no measurable bias** with the reddening and the inclination of galaxies
- A high SNR tends to improve the results
- This work opens very **promising perspectives** for the exploitation of large and deep photometric surveys which encompass a larger redshift range and where spectroscopic follow-up is necessarily limited
- Next work: extend this method to higher redshifts and consider a non-representative training database (see my talk tomorrow!)

Johanna Pasquet


Context and motivations

- Use of photoz i Cosmology
- Estimate photoz
- State of the art
- Deep Learning

Results

- The data DL networ
- Our results

Summary

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

21

Johanna Pasquet

Context and motivations

- Use of photoz in Cosmology
- Estimate photoz
- State of the art
- Deep Learning

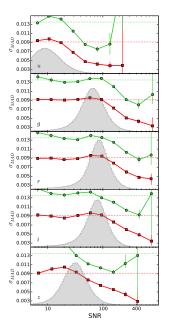
Results

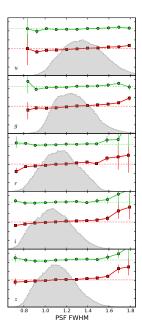
- The data
- DL networ
- Our results

Summary

						GDDG
Trial	training	size of 1 test	bias	$\sigma_{\rm MAD}$	η	$\langle CRPS$
	sample size	sample				
Training with 80% of the dataset	393,219					
Full test sample		103,306	0.00010	0.00912	0.31	0.00674
(B16)		(103,306)	(0.00062)	(0.01350)	(1.34)	
Suspect zone (SZ) removed		101,499	0.00004	0.00908	0.31	0.00672
Widest 10% of PDFs		91,543	0.00006	0.00848	0.09	0.00600
Widest 20% of PDFs		79,897	0.00005	0.00789	0.06	0.00550
Stripe 82 only		3,943	-0.00009	0.00727	0.34	0.00574
Stripe 82 with widest 20% of PDFs removed		3,131	0.00004	0.00635	0.09	0.0046
Training with 50% of the dataset*	250,000	252,500	0.00007	0.00910	0.29	0.00672
Training with 20% of the dataset	99,001	385,970	-0.00001	0.00914	0.30	0.0067
Training with 2% of the dataset	10,100	434,228	-0.00017	0.01433	1.26	0.0100
Training on Stripe 82	15,771					
Stripe 82 removed*		478,274	0.00194	0.01341	1.15	0.00988
Stripe 82 only		3,942	-0.00002	0.00795	0.38	0.00622
Training w/o Stripe 82	486,560					
Stripe 82 removed*	,	97,607	0.00000	0.00914	0.33	0.00680
Stripe 82 only*		19,714	-0.00077	0.00760	0.41	0.00600
· · · · · · · · · · · · · · · · ·						

Johanna Pasquet


Context and motivations


- Use of photoz ir Cosmology
- Estimate photoz
- Deep Learning

Results

The data DL network Our results

Summary

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで