



Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

CPPM IRFU LAM TAROT

Imen Al Samarai CPPM-ANTARES

## Plan

- Transient sources: GRBs and Core collapse
   SNe
- Research methods for GRBs
- TAToO
- Perspectives

## Introduction

### GRBs

- Core collapse of massive supernovae( $\Gamma \approx 100$ )
- Prompt emission of neutrinos(100 TeV)
- Prompt emission of gammas
- Afterglows (X, V, Radio...)
- 1 CCSN with HR jets /1000

### **Core collapse SN**

- Core collapse of massive  $SNe(\Gamma \approx few)$
- HE neutrino emission (100 GeV -TeV)
- No gamma emission (choked gammas)
- Afterglows (X, V, Radio...)



## **Technics for GRB search**

Triggered search

**Neutrino Detection triggered by external sources** (SWIFT, INTEGRAL, FERMI...) providing timing and position information

## Rolling Search

Search for HE neutrino events or multiplets (n>=2) within the same direction and temporal window.

## **Technics for GRB search**

### Triggered search

**Neutrino Detection triggered by external sources** (SWIFT, INTEGRAL, FERMI...) providing timing and position information

### Advantages:

Nature and location of the sources are known Very low background

### Disadvantages:

Dependance on external sources SWIFT (1.4 sr fov)  $\rightarrow$  Only ~1 / 9 GRB is detected (no external trigger for choked GRBs)



## **Technics for GRB search**



## Rolling Search

Search for HE neutrino events or multiplets (n>=2) within the same direction and temporal window.

#### Avantages:

Covers full hemisphereNo external triggers

### Disadvantages:

The nature of the source is unknown
 → Need follow up to confirm detection(nature, redshift...)
 → need fast analysis and good angular resolution

### Principle

### Tarot Antares Target of Oppotunity



ANTARES: 3D net of 900 PMs





- TAROT Sud (chili)
- FOV : 2 ° x 2 °
- Fast repositioning (10s)
- *Good sensitivity*(V<19 in 300s)

### Principle



ANTARES: 3D net of 900 PMs

### Principle



#### Keys of success(1/2):

### The On-line reconstruction performance in ANTARES



→ A very fast reconstruction algorithm is needed

#### Keys of success(1/2):

### The On-line reconstruction performance in ANTARES





## → Reconstr. taking 10ms / event is implemented

### Keys of success(1/2):

### The On-line reconstruction performance in ANTARES



## → Reconstr. taking 10ms / event is implemented

Angular resolution distribution



 $\rightarrow$ On-line reconstruction enlarges the angular resolution

 $\rightarrow$  Need to send a refined position after off-line reconstruction

### Principle



Keys of success (2/2):

### Multiplet of neutrinos (n>=2) background

 $R_{1 \text{ atm}} = 300 \text{ yr}^{-1} \text{ in ANTARES}$  (upward going events, fitted on more than 2 lines)

#### For a doublet:

 $\Delta \Omega = 3^{\circ} \times 3^{\circ}$ 

Δt = 15 min

$$R_2^{atm} \approx 2 \left(\frac{\Delta \Omega}{2\pi} \Delta t\right) \left(R_1^{atm}\right)^2$$

- → R<sub>2 atm</sub> ~0.007 yr<sup>-1</sup>
- → A detection would be almost significant
- → The trigger is now implemented

#### Keys of success (2/2):

### High energy events

→Selection by cuts on energy estimators so that : 1 to 2 alerts sent / month

**Energy estimators** are:

- Number of touched storeys used in the fit

- Signal amplitude in the PMs (p.e.)



#### Keys of success (2/2):

### High energy events

→Selection by cuts on energy estimators so that : 1 to 2 alerts sent / month

#### Energy estimators are:

- Number of touched storeys used in the fit

- Signal amplitude in the PMs (p.e.)



→ Cuts are optimized for 12 lines configuration
→ Trigger is now implemented

Keys of success (2/2):

The event selection

High energy events



### Principle



## **Observation strategy**

#### Real Time:



### 6 images of 3 minutes

(T0, T0+3min, T0+6min, T0+9min, T0+12min and T0+15min)

### **Delayed:**



T0+1 day: 6 images of 3 min T0+3 days: \_\_\_\_\_ T0+9 days: \_\_\_\_\_ T0+27 days: \_\_\_\_\_

## **Image Analysis**

#### Image substraction tool

Tuning an image substraction program originally used for SNe Search





Increasing luminosity Decreasing luminosity Badly substracted

## **Conclusion et perspectives**

- TAToO is a research using « **special** »**neutrino events as a trigger for other detections**
- 8 alerts in total have been sent to TAROT → 6 were followed (images taken)
- The system is now fully operational !

I was involved in :

- Setting up the neutrino triggers for different ANTARES lines configuration
- Evaluating the optical background for GRBs/ CCSN detection
- Comparing trigger efficiencies for GRB/CCSN detection
- Being a « permanent » shifter...

To come next:

- First analysis of the images
- Include it automatically in the chain
- Call for other telescopes (ROTSE, ZATCO...)
- Extend to other detections (X, Radio..)



The model (Ando & Beacom (PRL 95,061103(2005))

• Extension of RMW model







- For a jet with the following parameters:
- Ejet =  $3.10^{51}$  ergs
- Bulk Lorentz factor = 3
- Jet duration : 10 s
- For our usual alerts (HE (12/yr))

HE cuts set (pure sample, 5TeV mean energy(MC)):

0.4 HE from SN(10 Mpc)

HE neutrino spectrum (kaons + pions decay contributions) from a CCSN at 10 Mpc



- For a jet with the following parameters:
- Ejet =  $3.10^{51}$  ergs
- Bulk Lorentz factor = 3
- Jet duration : 10 s
- For our usual alerts (HE (12/yr))

HE cuts set (pure sample, 5TeV mean energy(MC)):

0.4 HE from SN(10 Mpc)

• For IC usual alerts (doublets (25 /yr))

1.5 doublets from SN ( at 10 Mpc)

HE neutrino spectrum (kaons + pions decay contributions) from a CCSN at 10 Mpc



## **Triggers sensitivity for CCSNe**



• Poisson fluctuations included:

HE: 2/yrDoublet:  $4 \ 10^{-2}/yr$ 

- Within 20Mpc (local supercluster), trigger sensitivities are comparable .
- HE trigger dominant within 300 Mpc (Tarot sensitivity)

Total CCSN rate :  $1/ \text{ yr}/ 10 \text{Mpc}^3$ For (R=1% Total rate; Ej = 3.  $10^{51} \text{ ergs}$ )



## **Triggers sensitivity for GRBs**

- Waxman-Bahcall Flux (Average BATSE burst)
- Same calculation as for CCSN considering :
  - Average luminosity 10<sup>53</sup> ergs/s
  - GRB local rate : 2/year (non –linear rate extension)

Triggers are comparable within 400 Mpc HE 0.7 /yr doublets 0.6/yr



GRBs rate has to studied as a function of their luminosities



## Supernova rate with galaxy catalog



- Galaxy catalog (name, distance, morphology, luminosity, etc.) by Karachentsev et al. (2004)
- Conversion to SN rate with calibration by Cappellaro et al. (1999)
  - Underestimating starbursts?
- R<sub>SN</sub> ~ I / yr within 10 Mpc

## Neutrino spectrum

Ando & Beacom, Phys. Rev. Lett. 95, 061103 (2005)



- K-decay neutrinos have higher break energies because
  - Lifetime is twice shorter
  - 4 times massive, significantly less radiative loss (t<sub>rc</sub>~m<sup>4</sup>)
  - Neutrino carries larger fraction of meson energy