

Etude du taux d'électrons dans des événements multi-jet simulés pour le détecteur ATLAS auprès du LHC

Dans le cadre du sujet de thèse: *« Mesure de la section efficace de production de paires top-antitop auprès de l'expérience ATLAS au LHC «*

Stefania BORDONI (LPNHE Paris)

The LHC is back !

	CME	Luminosity	
Design first collisions b.C. a.C.	14 TeV 900 GeV 2.2 TeV 7 TeV	10 ³⁴ cm ⁻² s ⁻¹ ◄	Only 3 days after the LHC start-up !!

The measurement of the top-antitop cross section will be in the same time a standard candle and a direct test of the detector knowledge (ATLAS)

$$\sigma_{ttbar} = \frac{N_{ttbar}^{Reco} - N_{bkg}}{\epsilon L}$$

where:

ε : efficiency (geometry, reconstruction,

identification, trigger)

- L : integral luminosity
- Requirements: a good event selection for the signal and a deep knowledge of the background events

Study of the major source of background for top-antitop (ttbar) events at LHC.

Signal: ttbar in di-leptonic channel

This channel is characterized by a very good significance (very clean signal): the 2 isolated leptons and the large amount of E_{T} Miss allow to trigger the event

The main source of background will be the QCD background

The QCD background

Due to the hadronization process, quarks become complicated objects: jets.

Hadronization process

Detector response

U

cbar

- Sometimes a quark can decay leptonically.
 The out-coming lepton can be reconstructed by the detector as an isolated lepton
- Sometimes a jet can be reconstructed as an electron

A good estimate of extra lepton rate will give an estimate of QCD background

D

bbar

 B^+

JRJC 29 nov - 5 déc 2009

Stefania BORDONI (LPNHE)

Which kind of data?

The direct access to the generated events allow to investigate the origin and the properties of the reconstructed particles

Full study of multi-jet events with a topology similar to signal (semi-leptonic ttbar)
 study of extra electrons: origin and classification

- 2. Method to predict the rate of extra electrons for other multi-jet samples
- Validation of the prediction method on a sample with a similar topology (full hadronic ttbar)
- 4. Test of the prediction method on a sample with a different topology (di-jet sample)

The first step is to distinguish true (irreducible) by fake electrons.

The origin of extra electrons is given by an association with the closest jet: if this closest reconstructed jet matches a b-parton the jet is labeled as "b-jet", otherwise, as "light-jet" (u,d,s,c).

First results

Extra electrons' details in semi-leptonic events:

extra electrons				
origin	true	fake		
from b jet	223	8		
from light jet	42	115		
overall	265	123		

<u>rate :</u>

extra electrons				
extra/jet	* 10 ⁻⁵	73 ± 4		
fake/ jet	* 10 ⁻⁵	23 ± 2		

Remark:

Only the study of electrons coming from a light jet is presented here because in QCD events only a small number of b-jet is expected.

The semi-leptonic sample results allow to predict :

- the P_{τ} spectrum of the jets giving an extra electron
- (- the P_{T} spectrum of the extra electron)

light jet Pt spectrum

Probability for a jet of a given P_{τ} to create an extra electron

How to predict the spectrum of the jets giving an extra electron:

Probability for a jet of a given P_{τ} to create an extra electron (ttbar semi-leptonic channel)

The predicted jet spectrum:

Jet P_{τ} spectrum of all light-jets (ttbar full- hadronic channel)

results for the full hadronic ttbar sample				
	electrons from b	electrons from light	total	
predicted	43 ⁺⁷ ₋₁₀	44 ⁺¹¹ -12	87 ⁺¹³ -16	
measured	44	36	80	

Some comments :

- The predicted and measured spectrum presented in the previous slide, are in good agreement even if the available statistics is not very high.
- The agreement is also confirmed by the numerical results (shown in the table)

The prediction method is validated by those results and ready to test to the di-jet sample

Test on the di-jet sample

results for thedi-jet sample				
	electrons from b	electrons from light	total	
predicted	21 ⁺⁶ -4	364 ⁺¹⁵³ ₋₁₃₁	385 ⁺¹⁵³ ₋₁₃₁	
measured	51	205	256	

The predicted number are underestimated for b-jets and overestimating for light-jets. What happens?

Di-jet sample 2/2:

The method developed to predict the extra electron number take in account the characteristics of P_{τ} spectrum of the samples that we want to predict.

But jets are complicated objects and they have a different spectrum from the original parton... *is it the answer?*

- The cross section measurement will be a standard candle and a veritable test of the knowledge of the detector response.
- The main source of background of a di-leptonic ttbar processes is the QCD background
- A good estimation of extra electron rate will give a good estimation of this background. To do that we developed a method to predict the P_T spectrum of jets creating an extra electron.
- The prediction method has been validated but the test on the di-jets sample is not satisfactory and more detailed studies are in progress
- A prediction method, based on a data driven approach, will be then developed

data are coming soon...