

Claudio Geuna

Journées de Rencontre Jeunes Chercheurs 2009

OUTLINE:

1) Overview of the trigger system of the ALICE Muon Spectrometer.

2) Commissioning measurements and results.

Alice experiment A Large Ion Collider Experiment

ALICE experiment @LHC is specifically dedicated to ultra-relativistic heavy-ion collisions

Claudio Geuna JRJC2009

The Muon Spectrometer (I)

Forward muon spectrometer

Angular acceptance $2^{0} < \theta < 9^{0}$

Pseudorapidity $-4 < \eta < -2.5$

study of the production of open heavy flavour and heavy quarkonia $(J/\Psi \text{ and } \Upsilon)$ through the muon (μ) decay channel

Claudio Geuna JRJC2009

The trigger system: Muon Trigger Chambers

2 trigger stations (MT1 and MT2) located at about 16 m from the IP and 1 m apart from each other placed behind an iron muon filter

Layout of the trigger stations and the iron wall installed in the Alice cavern.

The trigger system: Muon Trigger Chambers

2 stations, of two planes each total area: $\sim 140 \text{ m}^2$

72 RPCs of 3 different shapes and dimensions : $\sim 1.6 \text{ m}^2 \div 2.1 \text{ m}^2$

20992 strips and frontend channels strip pitch: 10-45 mm(~1/2/4 cm) strip length: 170÷720 mm

MT2

The principle of the trigger (I)

GOAL:

 Selection of (muon) tracks pointing to I.P. with p_t above 2 thresholds:

> $low p_{t cut} = 1 \text{ GeV/c}$ high p_{t cut} = 2 GeV/c

 Trigger signals for single μ, like-sign and unlike-sign μ pairs

- cut on $p_t \Leftrightarrow$ cut on deviation between MT1 and MT2
- \rightarrow select tracks in a road of a given width

 $\otimes \mathbf{B}$

 $\mu +$

Z

The principle of the trigger (II)

GOAL:

 Selection of (muon) tracks pointing to I.P. with p, above 2 thresholds:

$$low p_{t cut} = 1 \ GeV/c$$

$$high p_{t cut} = 2 \ GeV/c$$

• Trigger signals for single μ, like-sign and unlike-sign μ pairs

PRINCIPLE:

- cut on p_t ⇔ cut on
 deviation between MT1and
 MT2
- \rightarrow select tracks in a road of a given width

Claudio Geuna JRJC2009

Resistive Plate Chambers (I)

A Resistive Plate Chamber (RPC) is a planar geometry gaseous detector

Resistive Plate Chambers (II)

Gas mixtures: avalanche vs streamer

ALICE MuonTrigger RPCs →Typical avalanche operation voltages ~ 10 kV

→ Typical streamer operation voltages ~ 8 kV

The **difference** between the streamer and avalanche modes lies in the **gas mixture (quenchers)** and **HV** applied between the two electrodes.

Main advantages of streamer and avalanche RPC operation

Operation mode	Advantages
Streamer	Spatial resolution
	No amplification needed
	Lower noise rate
Avalanche	Time resolution
	Rate capability
	Slower ageing

Resistive Plate Chambers (III)

<u>ALICE</u>: both *A*-*A* and *p*-*p* data-taking

Requirements for A-A data taking:

- Spatial resolution $\sim 1 \text{ cm}$
- Occupancy as low as possible (few % Pb-Pb) and *cluster-size* as close as possible to 1
- *Rate capability* \sim 3 Hz/cm² (Pb-Pb) and \sim 25 Hz/cm² (Ar-Ar)
- *Time resolution* ~ 2 ns

Requirements for p-p data taking:

- Expected muon trigger rate much lower than in A-A collisions
- Rate capability ~100 Hz/cm²
- Goal: detector lifetime

Resistive Plate Chambers (IV)

<u>RPC performances</u>

Rate capability up to $\sim 100 \text{ Hz/cm}^2(\text{p-p})$ –

Time resolution \sim 2 ns

Low resistivity bakelite: $\rho = 2 \div 8 \ 10^9 \ \Omega cm$ Dual threshold Front End Electronics $10 \ mV - 80 \ mV$

Resistive Plate Chambers (IV)

<u>RPC performances</u>

Rate capability up to $\sim 100 \text{ Hz/cm}^2(\text{p-p})$

Time resolution ~ 2 ns

Requirements for A-A data taking:

Spatial resolution $\sim 1 \text{ cm}$

Occupancy as low as possible (< % Pb-Pb) and *cluster-size* as close as possible to 1

Streamer mode

Low resistivity bakelite: ρ = 2÷8 10⁹ Ωcm Dual threshold Front End Electronics 10 mV - 80 mV

Claudio Geuna JRJC2009

Resistive Plate Chambers (IV)

<u>RPC performances</u>

Rate capability up to $\sim 100 \text{ Hz/cm}^2(\text{p-p})$

Time resolution ~ 2 ns

<u>Requirements for A-A data taking:</u>

Spatial resolution $\sim 1 \text{ cm}$

Occupancy as low as possible (< % Pb-Pb) and *cluster-size* as close as possible to 1

Streamer mode

Low resistivity bakelite: $\rho = 2 \div 8 \ 10^9 \ \Omega cm$ **Dual threshold Front End Electronics** 10 mV - 80 mV

<u>Requirements for p-p data taking:</u>

Expected *muon trigger rate* much lower than in A-A collisions

Goal: detector lifetime

"Highly saturated" avalanche mode

Claudio Geuna JRJC2009

Resistive Plate Chambers (V)

The two gas mixtures in detail.....

The gas mixture used will be different for A-A and p-p collisions. A-A collisions (a wet, low-gain streamer mixture will be used) 50.5% Ar 41.3% $C_2H_2F_4$ 7.2% C_4H_{10} 1% SF_6 p-p collisions (a wet, highly-saturated avalanche mixture will be used) 89.7% $C_2H_2F_4$ 10% C_4H_{10} 0.3% SF_6

OUTLINE:

1) Overview of the trigger system of the ALICE Muon Spectrometer

2) Commissioning measurements and results

Muon Spectrometer commissioning with cosmic rays: goals

- Global test of the Muon Spectrometer

Muon Spectrometer commissioning with cosmic rays: goals

- Global test of the Muon Spectrometer
- Test of the Trigger Chambers and of the Tracking Chambers separately

Muon Trigger commissioning with cosmic rays: goals

- Global test of the Muon Spectrometer
- Test of the **Trigger Chambers** and of the Tracking Chambers separately

Detectors

Electronics

Dark current and rate measurements

test of Front-End and trigger electronics

RPCs working point

DAQ, DCS

Muon Trigger commissioning with cosmic rays: goals

- Global test of the Muon Spectrometer
- Test of the **Trigger Chambers** and of the Tracking Chambers separately

Detectors

Electronics

Dark current and rate measurements

test of Front-End and trigger electronics

<u>RPCs working point</u>

DAQ, DCS

RPC working point in streamer

RPC working point in avalanche

Claudio Geuna JRJC2009

Trigger chamber efficiency (I)

Due to : *geometrical acceptance* and *projective geometry trigger* (the tracks triggered have to come from the Interaction Point IP)

the ALICE Muon Spectrometer is not designed to detect cosmic rays

To study the *global features* of the system, the nearly horizontal tracks triggered are very useful for our aims

Trigger chamber efficiency (II)

z

- θ_y angular distribution
 reflects the cosmic muon
 zenithal angle distribution
- Distribution not symmetric: lower efficiency for muons from the back due to difference in timing between the two stations

Trigger chamber efficiency (III)

Experimental set-up

The trigger algorithm searches for hits in at least 3 out of 4 trigger chambers. We define:

Trigger chamber efficiency (IV)

Selection of *tracks* in data analysis for efficiency evaluation

1) ~ 60% shower
 2) ~ 40% single tracks

used in efficiency calculation

Total trigger rate : ~ 0.18 Hz (Streamer) ~ 0.23 Hz (Avalanche)

Event display of a cosmic shower

Event display of a cosmic muon

OUTLINE:

1) Overview of the trigger system of the ALICE Muon Spectrometer:

2) Commissioning measurement and results:

- Tests in Streamer mode (March-April 2009)
- Tests in Avalanche mode (August-September 2009)

RPC status: efficiency vs. H.V.

RPC working point in streamer:

Cosmics run (Mar-Apr 2009): **The goal is to find the working voltage by H.V. scan from a "nominal" H.V. value (**corresponding to H.V. = 0 V in the plot) **determined during a period of preliminary tests.**

CAVEAT

Difficult to determine the absolute value of RPC efficiency due to specific cosmic run conditions: 1) Low statistics

2) Systematic effects : cosmics from the direction opposite to IP. The timing between the two trigger stations is not optimized for them!

"Efficiency" in the bending plane (per slat) for all the 4 stations (streamer mixture)

"Efficiency" in the non bending plane (per slat) for all the 4 stations (streamer mixture)

Correlation between bending and non-bending efficiency (streamer mixture)

Hardware issues can be more clearly understood considering this graphic

OUTLINE:

1) Overview of the trigger system of the ALICE Muon Spectrometer:

2) Commissioning measurement and results:

- Tests in Streamer mode (March-April 2009)
- Tests in Avalanche mode (August-September 2009)

RPC status: efficiency vs. H.V.

RPC working point in **avalanche**:

Cosmic run (Ago-Sep 2009):

The goal is to find the working voltage by H.V. scan from the "nominal" H.V. value estimated with preliminary test .

"Efficiency" in the bending plane (per slat) for all the 4 stations (avalanche mixture)

"Efficiency" in the non bending plane (per slat) for all the 4 stations (avalanche mixture)

Conclusions

First and successful long-term test of the full detector in **avalanche mode**

MTR and MTK were stable and permanently operational, all along the cosmic run

The run has allowed to *test the muon spectrometer in a configuration very close to the final one* (almost all the detection and read-out elements active)

A muon track in the ALICE Muon Spectrometer with dipole magnet OFF

A muon track in the ALICE Muon Spectrometer with dipole magnet ON

LHC restart: ALICE first event !!!

A handful of tracks have been reconstructed pointing back to a unique vertex

Claudio Geuna JRJC2009

05 234	225	209	193	177	155	133	16	38	60	76	92	108	117
Out	B1 LC6L9B1	LC5L9B1	LC4L9B1	LC3L9B1	LC2L9B1	LC1L9B1	RC1L9B1	RC2L9B1	RC3L9B1	RC4L9B1	RC5L9B1	RC6L9B1	RC7L9B1
23	224	208	192	176	154	132	15	37	59	75	91	107	116
06 LC7L8	B1 223	207	191	175	153	131		36	58	74	90	106	RC7L8B1
	LC6L8B1	LC5L8B1	LC4L8B1	LC3L8B1	LC2L8B1	LC1L8B1	RC1L8B1	RC2L8B1	RC3L8B1	RC4L8B1	RC5L8B1	RC6L8B1	
23	222	206	190	174	152	130	13	35	57	73	89	105	115
07 LC7L7	B1	205	189	173	151	129	 12	34	56	72	88	104	RC7L7B1
Jui	LC6L7B1	LC5L7B1	LC4L7B1	LC3L7B1	LC2L7B1	LC1L7B1	RC1L7B1	RC2L7B1	RC3L7B1	RC4L7B1	RC5L7B1	RC6L7B1	
23	220 LC6L6B2	204 LC5L6B2	188 LC4L6B2	172 LC3L6B4 171	150 LC2L6B4 149	128 LC1L6B3 127	RC1L6B3	33 RC2L6B4 32	55 RC3L684 54	71 RC4L6B2	87 RC5L6B2	103 RC6L6B2	114
LC7L6	B1 219	203	187	LC3L6B3 170 LC3L6B2	LC2L6B3 148 LC2L6B2	LC1L6B2 126 LC1L6B1	9 RC1L6B2 RC1L6B1	RC2L6B3 31 RC2L6B2	RC3L6B3 53 RC3L6B2	70	86	102	RC7L6B1
	LC6L6B1	LC5L6B1	LC4L6B1	169 LC3L6B1	147 LC2L6B1			30 RC2L6B1	52 RC3L6B1	RC4L6B1	RC5L6B1	RC6L6B1	
09 230	218 LC6L5B2	202 LC5L5B2	186 LC4L5B2	167	145			RC215B4	RC31584	69 RC4L5B2	85 RC5L5B2	101 RC6L5B2	113
Jut LC7L5	B1 217 217 LC6L5B1	201 LC5L5B1	185 LC4L5B1	166 LC3L5B2 165	144 LC2L582 143			27 RC2L5B2	49 RC3L5B2 48 RC3L5B1	68 RC4L5B1	84 RC5L5B1	100 RC6L5B1	RC7L5B1
	216	200	184	164 LC3L4B4	142 LC2L4B4			25 RC2L4B4	47 RC3L4B4	67	83	99	
10	LC6L4B2	LC5L4B2	LC4L4B2	163 LC3L4B3 162	141 LC2L4B3 140	125 LC1L4B3 124	8 RC1L4B3 7	24 RC2L4B3	46 RC3L4B3 45	RC4L4B2	RC5L4B2	RC6L4B2	RC7L4B1
Dut	215 LC6L4B1	199 LC5L4B1	183 LC4L4B1	LC4L1B2 161 LC3L4B1	LC2L4B2 139 LC2L4B1	LC1L4B2 123 LC1L4B1	RC1L4B2 6 RC1L4B1	RC2L4B2 22 RC2L4B1	RC4L1B2 44 RC3L4B1	66 RC4L4B1	82 RC5L4B1	98 RC6L4B1	
228	214 LC6L3B2	198 LC5L3B2	182 LC4L3B2	160 LC3L3B2	138 LC2L3B2	122 LC1L3B2	5 RC1L3B2	21 RC2L3B2	43 RC3L3B2	65 RC4L3B2	81 RC5L3B2	97 RC6L3B2	111
Out LC7L3	B1 213	197	181 LC4L3B1	159 LC3L3B1	137 LC2L3B1	121 LC1L3B1	4 RC1L3B1	20 BC2L3B1	42 BC3L3B1	64 BC4L3B1	80 RC5L3B1	96 BC6L3B1	RC7L3B1
	212	196	180	158	136	120	3	19	41	63	79	95	
12	LC6L2B2	LC5L2B2	LC4L2B2	LC3L2B2	LC2L2B2	LC1L2B2	RC1L2B2	RC2L2B2	RC3L2B2	RC4L2B2	RC5L2B2	RC6L2B2	110
Dut	211 LC6L2B1	195 LC5L2B1	179 LC4L2B1	157 LC3L2B1	135 LC2L2B1	119 LC1L2B1	2 RC1L2B1	18 RC2L2B1	40 RC3L2B1	62 RC4L2B1	78 RC5L2B1	94 RC6L2B1	
226	5 210	194	178	156	134	118	1	17	39	61	77	93	109
	1		LOUIDI	1.021101	1021181	LC1L181	BC1L1B1	BC2L1B1	RC3L1B1	BC4L1B1	RC5L1B1	RC6L1B1	RC7L1B1

The principle of the trigger (I)

GOAL:

• Selection of (muon) tracks pointing to I.P. with p_t above 2 thresholds:

$$low p_{t cut} = 1 \text{ GeV/c}$$

high p_{t cut} = 2 GeV/c

• Trigger signals for single μ, like-sign and unlike-sign μ pairs

8 strips in the vertical direction and 1 in the horizontal direction.

PRINCIPLE:

cut on $p_t \Leftrightarrow$ *cut on deviation between MT1 and MT2* \rightarrow *select tracks in a road of a given width*

Claudio Geuna, 7 Ottobre 2009

Noise measurements - The Autotrigger method

The noise of the detectors is quantified by the dark counting rate, i.e. the counting rate of the detectors with no beam or irradiation, when the hits are only due to cosmic rays and intrinsic noise.

The counting rate is measured locally with the *autotrigger method* : the trigger is given by the detector itself, selecting events with at least one hit on both strip planes. The logical scheme of the electronic chain for the autotrigger measurements is shown below.

Logical scheme of the electronic chain for the autotrigger measurement.

The detector surface can be divided in **cells** defined by the crossing of strips in the two direction. Such a method provides the noise map of the detectors, which makes the detection of noisy spots possible.

Here there is the noise map obtained with gap 1210 (left) at the voltage of 8300 V (streamer mixture)

Taglio in impulso trasverso

Efficiency maps (I)

To evaluate better the uniformity of the detectors, and to detect any imperfection, though small, **efficiency maps** are measure at two voltage value.

In Streamer mode we chose 8200 V and 8100 V.

In Avalanche mode we chose only 10800 V.

The cells for efficiency maps are about $2x2 \text{ cm}^2$ large. With a 1000000 events run (~ 10 h acquisition time), the statistics is of about 500 events in central cells, 100 in peripherical cells , 50 in the very side cells. The resolution is of the order of the centimeter, so that, in the efficiency map, even the spacers that keep the distance between the electrodes costant (whose diameter is 1 cm) can be resolved. /

Distribution of triggered events for efficiency measurement over the surface of a half chamber. Units are given in cells. The area of the cells is $2x2 \text{ cm}^2$

Efficiency map of a half chamber operated at 8200 V. Units are given in cells. The area of the cells is $2x2 \text{ cm}^2$

Temperature - Pressure HV correction

$$V_{eff} = V \frac{T}{T_0} \frac{p_0}{p}$$

MT1 MT2