

Journées Rencontres Jeunes Chercheurs Barbaste, 30/11 au 5/12 2009

Étude des dibosons dans Atlas et performances du spectromètre à muons sur les cosmiques

Eve Le Ménédeu

Sous la direction de Ahmimed Ouraou

Petit plan de l'exposé

- Un petit peu de théorie... (les dibosons)
- Associée à un grand détecteur (Atlas)
- Vue par un type de particules (les muons)

Les dibosons : rappels W, Z

- Dibosons \rightarrow 2 bosons électrofaibles dans le même événement
 - Bosons électrofaibles $= W^{\pm}$ et Z
 - W = boson chargé, masse : 80,398 \pm 0,025 GeV
 - $^{\bullet}$ Z = boson neutre, masse : 91,1876 \pm 0,0021 GeV
 - Canaux de désintégration regardés ici :

•
$$Z \rightarrow \mu^+ \mu^-$$
: 3,36 %

• W
$$ightarrow \mu
u$$
 : 10,57 %

Les dibosons : leur production

- Dibosons \rightarrow 2 bosons électrofaibles dans le m me événement
 - $SU(2)_{L} \times U(1)_{\gamma}$ non abélien \rightarrow couplages entre bosons vecteurs
 - Couples étudiés : WZ, WW, ZZ, Wγ, Zγ
 - Événements observés (LEP II et TeVatron)
 - Diagrammes de Feynman :

Pourquoi les chercher ?

- Pour sonder le Modèle Standard !
 - Diagramme de production des ZZ n'existe pas dans la voie s à l'ordre des arbres → augmentation de la section efficace = physique au-delà du Modèle !
 - Exemple de modèle :
 - Bosons composites
 - Supersymétrie
 - Ο...

- Bruit de fond du Higgs
 - Pour les canaux de désintégration du Higgs en WW et ZZ*, accessibles pour m_µ > 160 GeV

Nombre d'événements attendus

Section efficace (Modèle Standard) * luminosité intégrée attendue en 2010

(soit au moins 100 pb⁻¹)

LO : ordre des arbres

Uniquement dans le canal muons.

Résultats suivants : pour les leptons e, μ

Remarque : les échelles sont très différentes...

 \rightarrow 4 fois plus d'événements attendus (ee, µeµet µ)

« Particules » détectées

Mesure des leptons

- Électrons grâce au calorimètre électromagnétique + détecteur interne
- Muons grâce au spectromètre à muons + détecteur interne

- Énergie manquante pour les neutrinos :
 - À l'avant : trou dans l'acceptance dû au passage du faisceau
 - Méconnaissance de l'énergie de collision entre les deux quarks
 - \bigcirc Dans le plan transverse $\Sigma p_{_T} \sim 0$
 - \rightarrow on raisonne en énergie transverse manquante.

Comment les observer ?

Sélections des dibosons : les WZ

•
$$\mathsf{Z} \to |^+|^-$$
 et $\mathsf{W} \to |_{\mathcal{V}}$ avec $\mathsf{I} = \mathsf{e}, \mu$

- On attend donc 3 leptons isolés et 1 neutrino (soit de l'énergie transverse manquante)
- Énergie
 - ightarrow p₁ > 10 GeV pour les 3 leptons
 - ∉/ > 25 GeV
- Masses
 - $|M_{_7} M_{_{\rm H}}| < 12 \; {\rm GeV}$

• Cône : $\Delta R(II) > 0,2$

• 40 GeV < M₁($\not\!\!\!E_{/}$,I₃) < 120 GeV, p₁(I₃) > 20 GeV

Isolation

$$\Delta R = \sqrt{\Delta \eta^{\mathsf{T}} + \Delta \varphi^{\mathsf{T}}}$$

₩Z Each normalized to 1000 events 80 TTbar 70Ē $p_{T}(I)$ Z D-Y 60 Zjet 50 ZΖ 40 30 20 E 7 120 140 160 180 200 p_{_} of leptons from Z (MeV) 80 60 100 WZ TTbar $p_{T}(I)$ Z D-Y Zjet ΖZ W 100 120 140 160 180 200 p_ of lepton from W (MeV) 20 40 60 80 ٠WZ TTbar Z D-Y €/ Zjet ZZ 20 100 120 80 40 60

140 160 180 200 Missing E_T (MeV)

Efficacité de reconstruction dans le cas $I = e, \mu$

180

200

160

Transverse mass of W (MeV)

Rapports de branchement :

 $\begin{array}{l} \mathsf{Z} \rightarrow \mathsf{II} : \mathsf{3}, \mathsf{36} \quad \% \\ \mathsf{W} \rightarrow \mathsf{Iv} : \mathsf{10}, \mathsf{6} \ \% \end{array}$

40

60

80

100

120 140

En prenant les sections efficaces NLO à 14 TeV ($\sigma_{_{tot}}=$ 47,8 pb, soit 680 fb en leptons)

On pense récupérer : **5,3 événements WZ** pour $L = 100 \text{ pb}^{-1}$ (soit ~ 7,7 % des événements) Et 0,73 événements de fond.

0<u></u>L

20

Eve Le Ménédeu

80

85

90

95

100

105

Z mass (MeV)

110

Couplages anormaux pour les WZ

$$L/g_{WWV} = ig_{1}^{V} (W_{\mu\nu}^{*} W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + i\kappa^{V} W_{\mu}^{*} W_{\nu} V^{\mu\nu} + \frac{\lambda^{V}}{M_{W}^{2}} W_{\rho\mu}^{i} W_{\nu}^{\mu} V^{*\nu\rho}$$

avec $g_{WWZ} = -e/\tan(\theta_{W}), \ g_{WWY} = -e \ et \ V = Z \ ou \ Y$

Dans le cas du Modèle Standard : $g_1^V = \kappa^V = 1$ $\lambda^V = 0$

On évalue les couplages anormaux grâce à :

$$\Delta g_1^{Z} \equiv g_1^{Z} - 1, \ \Delta \kappa_{\gamma} \equiv \kappa_{\gamma} - 1, \ \Delta \kappa_{Z} \equiv \kappa_{Z} - 1, \ \lambda_{\gamma}, \ \lambda_{Z}$$
$$g_1^{\gamma} = 1 \qquad \text{Invariance de jauge}$$
électromagnétique

Remarque : introduction d'un « cutoff » pour éviter $\Delta \kappa(\hat{s}) = \frac{\Delta \kappa}{(1 + \hat{s}/\Lambda^2)^n}$ la violation de l'unitarité

Les couplages anormaux se détectent principalement grâce à 2 distributions : Sections efficaces

p_T des Z

Le spectromètre à muons

La détection des muons

Faite grâce à 2 détecteurs

- Détecteur interne qui voit toutes les traces chargées
- Spectromètre à muons qui sert à les identifier et à affiner les mesures
- Faible dépôt d'énergie dans les calorimètre

Recontruction

- Chambres de déclenchement touchées \rightarrow zone d'intérę
- Recherche des signaux dans les chambres de précision de ces zones
- Tracé de segments tangents aux rayons de dérive
- Ajustement des segments en une trace
- Détermination de l'impulsion de la particule à partir de la courbure de la trace.

Les cosmiques

Événement de cosmiques vu par Atlas.

Track P=+2.24 code=1

Persint événement.

Track P=+1.74 code=1

En réalité on reconstruit 2 traces dans un tel événement.

Une trace dans la partie haute et une dans la partie basse du détecteur.

Perfomances d'Atlas avec les cosmiques

- Analyse combinée détecteur interne spectromètre :
 - À partir d'une trace dans le détecteur interne on cherche s'il y a au moins une trace dans le spectromètre

Résolution en impulsion

- 2 manières de faire
 - Dépendant du détecteur interne

•
$$\Delta \mathrm{p}_{_{\mathrm{T}}}/\mathrm{p}_{_{\mathrm{T}}} = (\mathrm{p}_{_{\mathrm{T,\,spectro}}} - \mathrm{p}_{_{\mathrm{T,\,ID}}})/\mathrm{p}_{_{\mathrm{T,\,ID}}}$$

- Ajustement de ce quotient dans les intervalles
- Soustraction de la résolution du détecteur interne (sur simu)
- Indépendante du détecteur interne

•
$$\Delta p_{_{\mathrm{T}}}/p_{_{\mathrm{T}}} = (p_{_{\mathrm{T,\,UP}}} - p_{_{\mathrm{T,\,DOWN}}})/p_{_{\mathrm{T,\,moy}}}$$

- Ajustement du quotient dans les intervalles

Ajustements

- Ce que l'on tire de ces ajustements...
 - Moyenne \rightarrow information sur l'échelle en énergie
 - Sigma \rightarrow information sur la résolution

Échelle en énergie

Dibosons Atlas Muons

Résolutions en impulsion

<u>Cas</u> : trace dans partie haute du spectro comparée à une trace du détecteur interne.

Conclusion

- Plein de choses à faire
- Reconstruction testée sur les cosmiques
 - Efficacités et résolutions attendues
- Dibosons : étude à compléter
 - Étudier l'impact de la résolution du spectromètre sur les couplages anormaux
 - Améliorer la sélection par des méthodes plus performantes que des coupures consécutives

THE END Merci :-)

Backup...

Number of events for WZ

Événements attendus dans le cas des dibosons WZ. Distinction entre les W⁺ et les W⁻.

Efficacité du spectromètre

#MDT+CSC crossed

Nombre de chambres de précision touchées en fonction de eta et phi. On ne peut reconstruire de trace que s'il y a au moins 3 chambres touchées.

Efficacité du spectromètre sur de la simulation.

η

 $\Delta p(\text{spectro - ID})$

