## Relaxation of 1-D self-gravitating system

Tirawut Worrakitpoonpon Supernovae, LPNHE, Université de Paris VI

> Supervised by : Michael Joyce

JRJC 2009 29 November – 5 December 2009

## Outline

- Motivation
- 3-D numerical investigation
- Simplified toy model : gravity in 1-D
- Theoretical & numerical studies in toy model
- Conclusion & discussion

## **Motivation**



Dark matter accounts for 22% of universe, ~5 times more than visible matter.

How and where do they distribute?



#### (ref Millennium simulation)





What is happening in small scale?



#### Evidence of galactic dark matter(ref Zwicky 1974)

## **3-D numerical investigation**

# The isolated 3-D self-gravitating system is employed, without the expansion of universe.



### • This model has theoretical obscurity :

- Particle ejection
  - $\rightarrow$  Non-stationary state
- And also numerical disadvantages :
  - Force divergence at small range
    - → Necessity of smoothing or cut-off range
  - Very costly
    - → Necessity of approximative methods

For simplicity, we therefore seek for the toy model

## Toy model : gravity in 1-D or "sheet model"

• The "sheet model" considers the mass sheets infinitely extended in y-z plane and moving along x axis.





#### The force exerting on *i*<sup>th</sup> particle is then

$$F^{i} \sim N^{i}_{+} - N^{i}_{-}$$

where  $N_{+}^{i}$  = number of particles on the right  $N_{-}^{i}$  = number of particles on the left



The simulation is done by following the exact trajectories of each particle, subjected to the free-fall motion with constant force.

# Theoretical & numerical studies in toy model

• We are able to point out two different relaxation processes.





 First, we consider the slow thermalization where the thermal equilibrium is defined by

$$f_V^*(\eta, \xi) = \frac{\pi^{-1/2}}{2} e^{-\eta^2} \operatorname{sech}^2 \xi$$
. (ref Rybicki 1971)

Note that velocity distribution is Maxwellian with inhomogeneous spatial distribution.



Thermailzation in density and velocity profiles



 The self-gravitating system always relaxes to unthermalized Quasi-Stationary State(QSS) at first. The existence and configuration of QSS were theorized in 1967, later known as "violent relaxation theory",

$$f = \eta \frac{\exp \left\{-\beta(\epsilon - \mu)\right\}}{1 + \exp \left\{-\beta(\epsilon - \mu)\right\}}$$
 (ref Lynden-Bell 1967)

This relaxation time does not depend on N, nor initial condition.



#### Theory does not work in every case



#### **Dependence on particle number, N?**

## Thermalization time scale increases with N, while violent relaxation does not.



#### Dependence on initial condition? Thermalization time scale changes with IC, while violent relaxation does not.

## **Conclusion & Discussion**

- Well defined thermalization
- Not well defined QSS

• Analogies to 3-D?