Ramsauer approach to the aerosol phase function in the Pierre Auger Observatory

Karim Louedec

Laboratoire de l'Accélérateur Linéaire Université Paris Sud, CNRS/IN2P3

29th November - 5th December 2009

Introduction

Multiple scattering and shower energy estimation

Karim Louedec (LAL) Ramsauer approach to Mie scattering

Outline

An atmospheric phase function based on the Ramsauer approach

- Light scattering by particles
- Solution from the Ramsauer effect

Application to the Pierre Auger Observatory

- Parametrization of the aerosol phase function
- On a possible problem at small scattering angles

3 Conclusions

Light scattering by (spherical) particles

Mie scattering: $R \ge \lambda$

 \Rightarrow Aerosols (for instance, sand during a sandstorm)

- total cross section: $\sigma_{\rm tot} \propto \lambda^{-\gamma}$, with $\gamma = 0.7 \pm 0.5$,
- phase function $P_{\rm Mie}(\theta)$ from typical parametrizations or tabulated.

Mie framework

 $\sigma_{\rm tot}$ depends on (wavelength λ , radius R, relative refractive index n)

$$\frac{\sigma_{\text{tot}}}{\pi R^2} \simeq \frac{2}{x^2} \sum_{\ell=1}^N (2\ell+1) \operatorname{Re}(a_\ell + b_\ell)$$

where x = kR and y = nx

$$a_{\ell} = \frac{x\psi_{\ell}(x)\psi'_{\ell}(y) - y\psi'_{\ell}(x)\psi_{\ell}(y)}{x\zeta_{\ell}(x)\zeta'_{\ell}(y) - y\zeta'_{\ell}(x)\zeta_{\ell}(y)} \qquad b_{\ell} = \frac{y\psi_{\ell}(x)\psi'_{\ell}(y) - x\psi'_{\ell}(x)\psi_{\ell}(y)}{y\zeta_{\ell}(x)\zeta'_{\ell}(y) - x\zeta'_{\ell}(x)\zeta_{\ell}(y)}$$
$$\psi_{\ell}(z) = zj_{\ell}(z) \qquad \zeta_{\ell}(z) = zj_{\ell}(z) - izy_{\ell}(z)$$

Bohren criterion: $N = x + 4x^{1/3} + 2$ ($\lambda = 0.4 \ \mu m, R = 50 \ \mu m$) $\longrightarrow N = 824$

The Ramsauer effect

- discovered in 1921 while studying scattering of electron over Argon atoms,
- several years before the Bohr's idea.

Electron on Krypton atom

Neutron on Lead nucleus

Description of the Ramsauer effect

- Idea: one part of the wave goes through the target and another does not,
- recombination behind the target
 - \rightarrow interference.

Ramsauer solutions

• total cross section $\sigma_{\rm tot} = 2\pi R^2 \left[1 - 2 \, \frac{\sin[2(n-1)kR]}{2(n-1)kR} + \left(\frac{\sin[(n-1)kR]}{(n-1)kR} \right)^2 \right]$ • phase function

$$P_{\text{Ramsauer}}(\theta) = \frac{1}{\sigma} \frac{\mathsf{d}\sigma}{\mathsf{d}\theta} = \frac{1}{4\pi} \left[kR \frac{1+\cos\theta}{2} \frac{2J_1(kR\sin\theta)}{kR\sin\theta} \right]^2$$

Total cross section

Independent of the refractive index

Aerosol size distribution

$$n(R \mid \bar{R}, \sigma) = \frac{\mathsf{d}N(R)}{\mathsf{d}R} = \frac{N}{\sqrt{2\pi}\log\sigma} \frac{1}{R} \exp\left(-\frac{\log^2(R/\bar{R})}{2\log^2\sigma}\right)$$

Aerosol size distributions

Ramsauer phase functions

Typical radius $\bar{R} \nearrow \Longrightarrow$ forward scattering \nearrow

Karim Louedec (LAL)

Different kinds of aerosols in the atmosphere

Measurements at different locations

- depends on the location,
- depends on the season.

Usually, 3 kinds of aerosols

- $0.01 \ \mu m \le R \le 0.1 \ \mu m$: the "aitken" mode,
- $0.1 \ \mu m \le R \le 1.0 \ \mu m$: the "accumulation" mode,
- $R \ge 1.0 \ \mu m$: the "coarse" mode (lifetime hours to days).

Outline

An atmospheric phase function based on the Ramsauer approach Light scattering by particles

Solution from the Ramsauer effect

Application to the Pierre Auger Observatory

- Parametrization of the aerosol phase function
- On a possible problem at small scattering angles

3 Conclusions

Measurements by the APF in Auger

- the Henyey-Greenstein parametrization: $P_{\text{HG}}(\theta \mid g = \langle \cos \theta \rangle, f)$ Auger $\rightarrow (f = 0.4, g = 0.6)$
- the Longtin's desert model (tabulated phase function) Auger \rightarrow wind = $10 \ m/s$

APF measurements uniquely between $24^{\rm o}$ and $150^{\rm o}$

Uncertainty at small and large scattering angles

S Benzvi et al, Astroparticle Physics **28** (2007) 312-320

Ramsauer phase function

The Henyey-Greenstein phase function

under the second second

One aerosol population $(\bar{R_1} = 0.25 \ \mu m, \log \sigma_1 = 1/2)$

Aerosol size distribution

The Longtin phase function

Aerosol size distributions

Ramsauer phase functions

Two aerosol populations $(\bar{R}_1 = 0.25 \ \mu m, \log \sigma_1 = 1/2)$, at 85% $(\bar{R}_2 = 9 \ \mu m, \log \sigma_2 = 1/2)$, at 15%

Outline

An atmospheric phase function based on the Ramsauer approach

- Light scattering by particles
- Solution from the Ramsauer effect

2 Application to the Pierre Auger Observatory

- Parametrization of the aerosol phase function
- On a possible problem at small scattering angles

3 Conclusions

Summary

- the Ramsauer approach is a powerful tool to describe scattering phenomena,
- the aerosol size distribution in Auger is not known yet.

Measurements of aerosol size on-site in Malargüe are made since the last year