Recherche de Technicouleur dans les canaux Zγ/Wγ à l'aide du détecteur ATLAS.

Louis Helary

Journées de Rencontre Jeunes Chercheurs 2009

Plan:

- Introduction sur la théorie technicouleur.
- Analyse dans le mode Zy @ 10 TeV.
- Analyse dans le mode Wy @ 10 TeV.

• Conclusions.

Technicouleur 1:

- Modèle inventé fin des années 1970 par S.Weinberg et L. Susskind.
- Les principe de base:
 - Générer la masse des bosons W et Z sans boson scalaire (ie: Higgs).
 - Utilisation d'une nouvelle interaction forte permettant de générer la brisure de symétrie ElectroFaible.
 - Ajouter N_n doublets de fermions: les techni-quarks (particules introduites avec une masse importante ~TeV).
 - Essayer d'observer les états liés de ces techniquarks (masses attendues $\sim 100 \text{GeV}$). 3

Technicouleur 2:

- Problèmes:
 - Technicouleur ne permet pas seul d'expliquer la masse des fermions du MS. On est obligé d'introduire l'extended TechniColor.

• Technicouleur ne respecte pas les tests de précisions électrofaibles réalisés au LEP et Tevatron.

Low Scale TechniColor

- Pour passer les tests précision du Modèle Standard, on introduit une autre théorie dite de TechniCouleur à basse échelle (LSTC).
- Principe:
 - $\alpha_{\tau c}$ croît beaucoup moins rapidement qu'en QCD (walking gauge coupling).
 - Recquiert un large nombre de doublets de techniquarks.

Conséquences phénoménologiques

• On cherche un spectre de techni mesons composé de $\omega_{\tau}, \rho_{\tau}, a_{\tau}$ et π_{τ} .

•
$$2M_{\pi T} > M_{\omega T}$$
 , $M_{\rho T} \& M_{aT}$.

• $\omega_{\tau}, \rho_{\tau}, a_{\tau}$ se désintègrent en 2 bosons de jauges électrofaibles ($\gamma, Z^0, W^{+/-}$).

4 résonnances étroites attendues.

 Ici on étudie les modes γ,Z⁰ et γ,W^{+/-}, avec Z→ee et W→ve.

Limites actuelles sur LSTC

• Obtenues au Tevatron:

Mode Zy

Zγ Signal:

- Provient essentiellement (>80%) ω_{T} .
- Signal obtenu en utilisant le générateur Monte Carlo PYTHIA, avec une coupure de ± 10 GeV, autour de la masse de ω_{τ} .

Sections efficaces:

Μ _{ωT}	σ (fb) @ 10 TeV
250	20.0
300	6.2
400	1.9

Zγ Bruits de fonds:

f

f

- Généré avec PYTHIA.
- Coupure générateur: √s>200GeV
- σ=429.6 fb

- BDF reductible:
 - Généré avec AlpGen.
 - Parton > 50GeV.
 - Sections efficaces:

Z + 0 jet	Z + 1 jet	Z + 2 jet Incl.
687.1 pb	55.6 pb	14.6 pb

Zγ Sélections des évenements:

- For Z:
 - Loose electrons.
 - $|\eta_{\rm e}|{<}2.5$.
 - P_T(e)>10 GeV.
 - $M_{(ee)} = M_Z \pm 7.5$ GeV.
- Events for L=10fb⁻¹ 70 🗕 Signal 📥 Zy SM 60 🕶 Z+2jets 50 Z+1iets Z+0jets 40 30 20 10 0 80 85 90 95 100 M(Z) (GeV)

- For γ:
 - Tight photon.
 - $|\eta_{_{\gamma}}|{<}2.5$.

Masse invariante du Z obtenue après sélection

Zγ Significance :

- On reconstruit ω_{τ} en sommant les quadri impulsions des Z et γ sélectionné.
- La significance statistique du signal par rapport au BDF:
 - Pour une observation: $\sigma = S/\sqrt{(S+B)}$
 - Pour une exclusion: $\sigma = S/\sqrt{(B)}$
- On essaye d'optimisé la significance en coupant sur les impulsions transverses de Z et γ.

Fontion d'ajustement:

Zy Look Elsewhere Effect:

- Dans une recherche réaliste on doit scanner un intervalle de masse (par exemple [200,500]GeV) et pas une valeur unique.
- En première approximation on peut considérer qu'on a N expériences indépendantes ou N est donné par:

 $N = (500-200)/2\sigma_{(reso détecteur)}$

- La probabilité d'avoir une fluctuation statistique dans cet intervalle est: N×(proba d'en avoir une dans une expérience).
- Reconvertir cette probabilité en nombre de sigma.

Resultats spectre de masse:

	Μ _{ωτ} =25	0 GeV	Μ _{ωΤ} =30	0 GeV	Μ _{ωτ} =4	00 GeV
	3σ	5σ	3σ	5σ	3σ	5σ
Observation	7 fb⁻¹	13 fb ⁻¹	27 fb ⁻¹	54 fb ⁻¹	65 fb⁻¹	130 fb ⁻¹
Exclusion	4 fb⁻¹	8 fb⁻¹	16 fb ⁻¹	33 fb⁻¹	36 fb⁻¹	72 fb⁻¹

Analyse sur l'angle de désintégration

 ω_{τ}

•Dans le réferentiel au repos de ω_{τ} l'angle entre les résidus de désintégration et la direction de vol de ω_{τ} dans le laboratoire est proportionnel à 1+cos²0.

•On cherche à obtenir cette distribution angulaire, pour le signal uniquement, en soustrayant le piédestal sous le pic.

Soustraction du piedestal 1:

Soustraction du piédestal 2:

Mode Wy

Wy Signal

- Provient surtout de a_{T} (>80%).
- Coupure générateur: √s=[M_{aT}±50] GeV.
- Sections efficaces:

Μ _{ρτ}	Μ _{aΤ}	σ (fb) @ 10 TeV
250	275	142.3
300	330	53.3
400	440	19.7

→Sections efficaces bcp + importante que $Z\gamma$. ²⁰

Wy Bruits de fonds

Wy Coupures de sélections:

- For W:
- Loose electron. $|\eta_e| < 2.5$.

 - P_T(e)>10 GeV.
 - ME₋>40GeV.
- For γ:
 - Tight photon.
 - $|\eta_{v}| < 2.5$.

Masse transverse du W obtenue après sélection.

Reconstruction de P⁴(W):

- Le neutrino n'est pas détécté, on assigne la ME_{τ} à son impulsion transerve.
- On contraint la masse du W à 80.403 GeV.
- On résout l'équation du second degré (P⁴(W))²=(P⁴(ν) +P⁴(e))². On obtient deux solutions pour Pz(ν).
- On choisit la solution minimisant l'angle entre l'électron et le neutrino dans le reférentiel du laboratoire.

Resultats pour $M_{aT} = 275$ @ 200 pb⁻¹

•On obtient 2 pics de résonnances.

•Travail préliminaire mais encourageant.

•Coupures de sélection:

Pt(γ)>10 GeV.

•Nombres d'événements ds la région du pic:

- NSig = 7.3 ± 2.7 [235,285]
- NBkg=25.0 ± 5.0 [235,285]

Observation =1.3σExclusion=1.5σ

Conclusions et futurs de l'analyse:

- Zγ:
 - Etude qui permettra à long terme d'améliorer les courbes d'exclusions obtenues au Tevatron.
 - Recalcuer les distributions angulaires dans le référentiel de Collins Soper.
 - Améliorer les résultats et la stabilité de l'ajustement contraint.
- Wγ:
 - Canal encourageant, l'étude pourrait presque être appliquée sur les premières données.

BACK-UP

Jet mis-tag parametrisation

Obtained for search of \Box +jet: Find in:

http://indico.cern.ch/materialDisplay.py?contribId=27&materialId=slides&confId=17537

Results for 10 fb⁻¹ with $M_{\omega T} = 250$

	Pt(Z)>20 Pt(□)>50 L=10fb⁻¹	How much data for 3□ with LEE	How much data for 5□ with LEE
Observation	4.8	7 fb ⁻¹	13 fb ⁻¹
Exclusion	6.5 🗆	4 fb ⁻¹	8 fb ⁻¹

$cos(\theta^*)$ results:

Sin²(□*) vs cos²(□*)	
Luminosity (fb ⁻¹)	Significance
10	2.1
20	3
57	5

Flat vs cos²(□*)	
Luminosity (fb ⁻¹)	Significance
10	0.9
104	3
289	5

Results for 10 fb⁻¹ with $M_{\omega T} = 300$

	Pt(2) > 70 $Pt(\Box) > 20$ $L = 10 fb^{-1}$	data for 3□ with LEE	data for 5□ with LEE	$M_{\Box T}$	301.4 ± 1.3 GeV	Sin²(□*) Vs		Flat vs Cos²(□*)	
					0.9 ± 1.1	Cos²(⊔*)			
					GeV			L (fb ⁻¹)	
Obs.	2.5	27 fb ⁻¹	54 fb ⁻¹		3.7 ± 0.2	L (fb ⁻¹)		10	04
				-CB	GeV	10	0.9		0.4
				<u> </u>	00.04/40		0.0	444	3
Excl.	6.6□	16 fb ⁻¹	33 fb ⁻¹	\square^2/n	30.34/18	104	3		

Results for 10 fb⁻¹ with $M_{\omega T} = 400$

Results	of Fit:

	Pt(Z)>80 Pt(□)>20 L=10fb ⁻¹	How much data for 3⊡ with LEE	How much data for 5⊡ with LEE
Obs.	1.6□	65 fb⁻¹	130 fb⁻¹
Excl.	2.1□	36 fb⁻¹	72 fb ⁻¹

$M_{_{\Box}T}$	$\begin{array}{c} 402.3 \pm 1.4 \\ \text{GeV} \end{array}$
	$\begin{array}{c} 0.8 \pm 1.2 \\ \text{GeV} \end{array}$
CB	3.2 ± 0.2 GeV
\Box^2/n	49.32/18

	Flat vs Cos²(□*)	
	L (fb ⁻¹)	
	10	0.3
0.7		
3	1070	3
	□ 0.7 3	Flat vs Cos²(□*) L (fb⁻¹) 10 0.7 1070