Projet SuperNEMO

Bilan de la R&D Calorimétrie

CHAUVEAU Emmanuel BDI CNRS - Photonis CEN Bordeaux - Gradignan

JRJC 2009 @ Barbaste

PLAN

Introduction

Double décroissance bêta Projet SuperNEMO Objectif de la R&D Calorimétrie

Bancs de tests aux CENBG

Spectromètre à électrons Acquisition et méthode d'analyse

R&D Calorimétrie R&D Scintillateur R&D Photomultiplicateur

PLAN

Introduction

Double décroissance bêta Projet SuperNEMO Objectif de la R&D Calorimétrie

Bancs de tests aux CENBG

Spectromètre à électrons Acquisition et méthode d'analyse

R&D Calorimétrie R&D Scintillateur R&D Photomultiplicateur

Double décroissance bêta

simple décroissance bêta β $_ZX(n) \rightarrow_{Z+1} Y(p) + e^- + \bar{\nu}_e$

double décroissance bêta $\beta\beta 2v$ $_ZX(2n) \rightarrow_{Z+2} Y(2p) + 2e^- + 2\bar{\nu}_e$

double décroissance bêta sans émission de neutrinos $\beta\beta0v_Z X(2n) \rightarrow_{Z+2} Z(2p) + 2e^-$

La découverte du processus ßß0v impliquerait :

- non conservation L
- neutrino de Majorana $\nu = \overline{\nu}$

-
$$\left(T_{1/2}^{\beta\beta0\nu}\right)^{-1} \propto |< m_{\nu}>|^{2}$$

Contraintes de détection du signal ßß0v

la détection correcte des événements ββ0v implique

- n un détecteur très bas bruit de fond radioactif
- nun très bonne résolution en énergie du calorimètre

Objectif du projet SuperNEMO

SuperNEMO est le projet successeur de l'expérience NEMO3

- **OBJECTIF :** attendre une sensibilité de ~ 50 meV sur $< m_{\nu} >$ soit une sensibilité ~ 10²⁶ ans sur $T_{1/2}^{\beta\beta0\nu}$
- **MOYEN :** étendre et améliorer la technique de NEMO3 (tracker + calorimètre) permettant l'identification des électrons provenant de la source ββ

De NEMO3 à SuperNEMO

$$T_{1/2} > \frac{\ln 2 N_A \epsilon}{k_{CL} A} \sqrt{\frac{m t}{N_{bdf} R}}$$

N_A nombre d'Avogadro

- ε efficacité de détection
- *mt* exposition (kg.y)
- k_{cl} facteur indice de confiance
- A masse atomique de l'isotope
- N_{bdf} bruit de fond (keV/kg/y)
- R résolution en énergie (keV)

NEMO3		SuperNEMO
T _{_1/2} > 1.4 x 10 ²⁴ y <m> < 390 – 810 meV</m>	sensibilité	T _{1/2} > 1 – 1.5 x 10 ²⁶ y <m> < 43 – 145 meV</m>
7 kg	masse d'isotopes	100 – 200 kg
8 % FWHM @ 3 MeV	résolution du calorimètre	4 % FWHM @ 3 MeV
18 %	efficacité	30 %
²⁰⁸ TI < 20 μBq / kg ²¹⁴ Bi < 300 μBq / kg	radiopureté de la source	²⁰⁸ TI < 2 μBq / kg ²¹⁴ Bi < 10 μBq / kg

NME : E. Caurier et. al., Phys. Rev. Lett. 100 (2008) 052503 Tübingen Simkovic et al., Phys. Rev. C 77 (2008) 045503 Jyvaskyla Suhonen et al. Int. J. Mod. Phys. E 17 (2008) 1

The SuperNEMO Collaboration

SuperNEMO Preliminary Design

détetecteur modulaire à géometrie plane

- feuille source : 4 x 3 m²
- tracker : cellule en mode Geiger
 - calorimètre : scintillateurs + photomultiplicateurs

- $\circ~$ 5 7 kg d'isotopes $\beta\beta$ par module
- 20 22 modules dans une cavité
 (100 150 kg d'isotope au total)

Compteur à scintillation

Objectif de la R&D Calorimètre

Atteindre une résolution en énergie de 4 % FWHM à 3 MeV ↔ 7 % FWHM à 1 MeV

Scintillateur« Ligth output » maximalMateriel peu dense pour éviter retrodiffusion des électronsGrand volume pour garder une bonne efficacité de detection de gamma

<u>Photomultiplicateur 8 "</u> Amélioration des performances de détection Résolution temporelle **250 ps à 1 MeV** Réponse linéaire meilleure que **1 % de 0 à 3 MeV**

Radiopureté (verre)	A (⁴⁰ K)	<	100 mBq / kg
	A (²¹⁴ Bi)	<	40 mBq / kg
	A (²⁰⁸ TI)	<	3 mBg / kg

Protocole de suivi des gains des PMs et calibrations (absolus / relatifs)

PLAN

Introduction

Double décroissance bêta Projet SuperNEMO Objectif de la R&D Calorimétrie

Bancs de tests aux CENBG

Spectromètre à électrons Acquisition et méthode d'analyse

R&D Calorimétrie R&D Scintillateur R&D Photomultiplicateur

Spectromètre à électrons

Source bêta : ⁹⁰Sr (0,55 MeV) ⁹⁰Y (2,28 MeV) d activité 470 MBq Sélection en énergie par champ magnétique variable Faisceau de ~ 27 Hz mono-énergétique ajustable de 0,4 à 2,0 MeV résolu à < 1 % FWHM

Mobilité des spectromètres :

SPECTRO 115 cm x 15 cmSPECTRO 2200 cm x 60 cm

Trigger deltaE

scintillateur de grande taille = bruit de fond important

mise en place d'un trigger deltaE :

- 110 µm de scintillateur BC404
- habillage polycarbonate 2 x 14,5 μm
- couplage optique vers 2 PMs 0.5" (XP1322)

Effet du deltaE

perte en énergie : de 26,6 keV @ 2 MeV à 31,4 keV @ 0.4 MeV effet sur la résolution ? mesures comparatives avec/sans deltaE pour divers compteurs à scintillation

extrapolation quadratique de la dégradation en résolution à 1 MeV :

$$D = \sqrt{R_{dE}^2 - R^2} = 3,13\%$$

Carte d'acquisition MATACQ32

Carte développé par CEA/DAPNIA et IN2P3/LAL Echantillonage à 2 GHz sur 1,250 µs (2520 points)

LSB en amplitude de 250 μ V

Analyse poussée des pulses après acquisition :

amplitude, propriétés temporelles, intégration charge, pré/after-pulses

Analyse des données

analyse ROOT via 2 interfaces :

■ analyse rapide

prévisualisation et analyse rapide de spectre analyse en amplitude, propriétés temporelles

■ analyse complete

sélection des acquisitions dans la base de données propriétés des pulses (amplitude, temps de montée, largeur à mi hauteur et temps de descente) linéarité et calibration en énergie

 \rightarrow fiche résultat

Fiche résultat

PLAN

Introduction

Double décroissance bêta Projet SuperNEMO Objectif de la R&D Calorimétrie

Bancs de tests aux CENBG

Spectromètre à électrons Acquisition et méthode d'analyse

R&D Calorimétrie R&D Scintillateur R&D Photomultiplicateur

R&D Scintillateur

Activités de recherche

- n amélioration des propriétés optiques : géométrie, polissage, réflecteur surface, ...
- développement d'un code de simulation optique avec GEANT4

R&D Scintillateur : Géométrie

<u>Objectif</u>: étudier l'effet de la géométrie des scintillateurs sur la résolution avec 1 unique gros scintillateur (polystyrène) par coupe successive

R&D Scintillateur : Géométrie

Toutes les mesures sont réalisés dans les mêmes condition :

- □ couplé avec le même PM Photonis (XP1886 SN100), même pont et HV (= 1650V)
- □ contact optique = isopropanol
- FWHM pour des électrons de 1 MeV (du spcectro 1) centrés vers la face d'entrée du bloc

Summary of Results

	SHAPE	CHARGE	FWHM	TIME RISE – FWHM – FALL
308 mm 308 mm	# 1	3.73 nV.s	10.0 %	5.9 – 16.6 – 31.8 ns
308 mm 308 mm	# 2	4.06 nV.s	9.6 %	5.5 – 15.1 – 26.2 ns
3 276 mm	# 3	4.23 nV.s	9.5 %	5.4 – 13.2 – 21.1 ns
4 276 min	# 4	4.79 nV.s	9.3 %	5.4 – 14.0 – 22.2 ns
5	# 5	5.39 nV.s	8.8 %	5.3 – 12.5 – 19.0 ns
219 mm	# 6	5.71 nV.s	8.8 %	5.2 – 12.1 – 18.3 ns

Modèle de simulations optiques (GEANT4)

Simulations optiques GEANT4

SHAPE	1	2	3	4	5	6
EXPERIMENT	10.5 %	10.1 %	10.0 %	9.8 %	9.4 %	9.4 %
SIMULATION	13.8 %	13.4 %	12.6 %	12.2 %	11.3 %	11.0 %
SIMULATION L _{ABS} x 6	10.4 %	10.5 %	10.0 %	9.9 %	9.4 %	9.4 %

accord des valeurs de façon relative mais pas du tout en valeur absolue

R&D Photomultiplicateur

Collaboration avec Photonis pour élaborer un nouveau PM 8"

linéaire, à haute performance et de bas bruit de fond radioactif.

Activités de recherches

- Amélioration de l'efficacité de détection (efficacité quantique + efficacité de collection)

Plus d'une 30aine de PMs prototype de Photonis – dont 7 XP1886 – ont été reçus et testé au CENBG

Photocathode

Bialkali photocathode (Sb-Rb-Cs, Sb-K-Cs) <u>Photonis :</u> standard bialkali (24 %) → super bialkali (35 %) → super² bialkali (40 – 50 %) <u>Hamamatsu :</u> standard bialkali (26 %) → super bialkali (33 %) → ultra bialkali (43 %)

Développer un nouvelle photocathode implique d'étudier et d'optimiser tout les étapes du processus : structure et propreté de la face de dépôt, composition et pureté de la photocathode, formation (épaisseurs), état final du vide ...

WAVELENGTH (nm)

Comparatif PM 8"

PM couplé a des blocs de 10 cm minimum :

Comparatif PM 8"

FWHM @ 1 MeV à ± 0.1 MeV	Bloc PS	Bloc PVT	amélioration QE
PHOTONIS XP1886_SN100 [24 % QE]	8.1 %	7.3 %	mais FWHM stable dégradation du vide dans le PM
PHOTONIS XP1886_SN124 [35 % QE]	7.9 %	7.1 %	nouveau process
PHOTONIS XP1886_SN160 [28 % QE]	7.5 %	6.7 %	meilleur efficacité de collection
HAMAMATSU R5912_ZQ0029 [33 % QE]	8.8 %	7.7 %	mauvaise correspondance sensibilité PM et spectre d'émission du scintillateur ?

Efficacité Quantique des PMs

décalage de la sensibilité des photocathodes entre PM Hamamatsu et Photonis

comparaison Hamamatsu et Photonis :

→ mauvaise efficacité de collection chez Hamamatsu

R&D Bas bruit de fond radioactif

Diminution de la quantité de PM ($5" \rightarrow 8"$)

Développement d'un verre très bas bruit de fond radioactif.

Contrôle/Sélection des autres composants (dynodes, céramiques, capacités, ...)

	A(⁴⁰ K)	A(²¹⁴ Bi)	A(²⁰⁸ TI)
Verre standard	~ 100 Bq/kg	~ 10 Bq/kg	~ 1 Bq/kg
NEMO3	~ 1 Bq/kg	~ 500 mBq/kg	~ 30 mBq/kg
SuperNEMO	< 0.1 Bq/kg	< 40 mBq/kg	< 3 mBq/kg

Résultat Verre bas bruit

Élaboration d'une première silice de synthèse excellente par **Prime-Verre** 1ere coulée réalisée en $2007 \rightarrow$ radiopureté validée par mesure germanium

Cout de production très élevé : planification d'un 2e coulée plus accessible Pas d'accord juridique et financier avec **Photonis** pour continuer (septembre 2008)

Démarrage immédiat d'une nouvelle collaboration avec **Philips Lightning**, Formulation d'un nouveau verre en 2009 validée en terme de radiopureté.

Conclusions

Résolution 7 % FWHM @ 1 MeV atteinte avec un calorimètre à base de scintillateur plastique + PM 8"

Prime Verre puis Philips ont développé des verres de radiopureté excellente.

→ possibilité de faire un PM haute performance et très bas bruit de fond radioactif

Perspectives

Reprise rapide du travail avec Hamamatsu

Septembre 2009 : Transfert des caractéristiques du verre bas bruit développé par Philips vers Hamamatsu