Background Rejection in $H \rightarrow \gamma \gamma$ with the ATLAS Detector

Journees Jeunes Chercheurs (29/11/2009 - 05/12/2009)

Relais du Moulin Neuf, Barbaste (Lot et Garonne)

Advisor : Louis Fayard

MOTIVATION

• The search for the Higgs Boson in the $\gamma\gamma$ channel is amongst the most important analysis in the low mass range $(114 < m_H < 150 GeV/c^2)$

- \rightarrow Good manipulation of Conversions
- \rightarrow Good measurement of photon direction
- → Good background rejection

Signal and Background

Inclusive Analysis

- $0 < |\eta| < 1.37$, $1.52 < |\eta| < 2.37$ (motivated by identification offline of photon)
- $p_T^{\gamma_1} > 40 \text{GeV}, p_T^{\gamma_2} > 25 \text{GeV}$ (given by optimization studies)

 $\sqrt{S} = 14 \text{ TeV}$ arXiv:0901.0512 [hep-ex] Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

K-factor applied for reducible background (dominated by γj): $K_{\gamma j} = 2.1$ and $K_{jj} = 1.3$

Inclusive Analysis

- $0 < |\eta| < 1.37$, $1.52 < |\eta| < 2.37$ (motivated by identification offline of photon)
- $p_T^{\gamma_1} > 40 \text{GeV}, p_T^{\gamma_2} > 25 \text{GeV}$ (given by optimization studies)

Large uncertainty on the reducible background. It has been computed with Pythia. It is much larger with Herwig (see later) $\sqrt{S} = 14 \text{ TeV}$ arXiv:0901.0512 [hep-ex] Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

K-factor applied for reducible background (dominated by γj): $K_{\gamma j} = 2.1$ and $K_{jj} = 1.3$

The ATLAS Detector

EM ATLAS Calorimeter

• EM Calo design optimized to the study of the $H \rightarrow \gamma \gamma$ channel : Energy resolution (and angular) need a good and precise invariant mass reconstruction

Structured in four compartments:

pre-sampler(measure shower energy upstream of calo.)

strip (fine granularity)

 \rightarrow early EM shower

<u>middle</u>

 \rightarrow measure big energy fraction of EM shower <u>back</u>

 \rightarrow shower tail (EM vs Had)

$$M_{\gamma_1\gamma_2} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1 - \cos\theta_{\gamma_1\gamma_2})}$$
$$\frac{\sigma_E}{E} \approx \frac{10\%}{\sqrt{E}} \oplus 0.7\%$$

- To reduce jet background below the irreducible background.
- Identification cuts (EM shower shapes)

 \rightarrow Second compartment and hadronic calorimeter: Jet rejection by large shower

- To reduce jet background below the irreducible background.
- Identification cuts (EM shower shapes)
 - \rightarrow Second compartment and hadronic calorimeter: Jet rejection by large shower
 - \rightarrow Fine segmentation in the first compartment : Separation γ / π^0

- To reduce jet background below the irreducible background.
- Identification cuts (EM shower shapes)
 - \rightarrow Second compartment and hadronic calorimeter: Jet rejection by large shower
 - \rightarrow Fine segmentation in the first compartment : Separation γ / π^0
- Track Isolation

- To reduce jet background below the irreducible background.
- Identification cuts (EM shower shapes)
 - \rightarrow Second compartment and hadronic calorimeter: Jet rejection by large shower
 - \rightarrow Fine segmentation in the first compartment : Separation γ / π^0
- Track Isolation

- To reduce jet background below the irreducible background.
- Identification cuts (EM shower shapes)
 - \rightarrow Second compartment and hadronic calorimeter: Jet rejection by large shower
 - \rightarrow Fine segmentation in the first compartment : Separation γ / π^0
- Track Isolation

Jet Rejection

	All	quark-jet	gluon-jet
Rejection (before isolation)	4922 ± 88	1617±36	15676 ± 463
Rejection (after isolation)	7764±159	2489±62	37796 ± 1628

Table1. Jet rejection expected for the inclusive jet sample for $E_T > 25 GeV$. The results are shown before and after track isolation cuts for all jets and separately for quark and gluon jets. The erros are statistical only

- To reduce jet background below the irreducible background.
- Identification cuts (EM shower shapes)
 - \rightarrow Second compartment and hadronic calorimeter: Jet rejection by large shower
 - \rightarrow Fine segmentation in the first compartment : Separation γ / π^0
- Track Isolation

Jet Rejection (Pythia vs Herwig)

		All	quark-jet	gluon-jet
Pythia	Rejection (before isolation) Rejection (after isolation)	4922 ± 88 7764 ± 159	1617±36 2489±62	$\begin{array}{c} 15676 \pm 463 \\ 37796 \pm 1628 \end{array}$
Herwig	Rejection (before isolation) Rejection (after isolation)	2445 ± 59 3341 ± 90	$707 \pm 21 \\ 939 \pm 31$	10043 ± 487 15739 ± 940

Table 2. Jet rejection expected for the inclusive jet sample for $E_T > 25 GeV$. The results are shown before and after track isolation cuts for all jets and separately for quark and gluon jets. The erros are statistical only. <u>Pythia vs Herwig Comparison</u>

Pythia – Herwig differences

(a) $17 < p_T < 35$ GeV

(b) $35 < p_T < 70 \text{ GeV}$

Figure 6: A p_T fraction of a π^0 with respect to a quark. A solid black histogram shows Pythia QCD dijet, a dashed red histogram shows Herwig dijet and a dotted blue histogram shows Pythia γ jet.

Converted Photon Reconstruction Performance

Monte Carlo Studies:

→ 57% of the photons in $H \rightarrow \gamma \gamma$ with ≥ 1 conversion with $R_{conv} < 800mm$ (which correspond ≈ the last point where we can to hope reconstruct one track)

→ 35% of the photons in $H \rightarrow \gamma \gamma$ with ≥ 1 conversion with R_{conv} < 350mm (can be reconstructed with the software version used for **arXiv:0901.0512** [hep-ex] and in the current software this part is dominated by double track conversions)

Converted Photon Reconstruction Performance

• 2 types of converted photons are used:

Two track conversions

 \rightarrow Reconstructed by a vertexing algorithm using 2 tracks with opposite charges \rightarrow Dominates at small radius

One track conversions

 \rightarrow One of the 2 tracks not reconstructed by the detector or could not do vertexing \rightarrow Primary electron separation / electron of conversion from signal with a hit in the first pixel layer (b-layer)

 \rightarrow Dominates at large radius (mainly TRT tracks called TRT stand alone)

Converted Photon Reconstruction Performance (Purity Conv. Photons)

<u>"Signal"</u> = Converted photon with true conversion coming from H

<u>"Secondary"</u> = True converted photon coming from Higgs (after bremsstrahlung) Or False conversion but at least one of the track is coming from Higgs

Example of secondary converted photon from Higgs

Higgs	Converted Photon Purity	No Isolation	Isolation
	Signal	91.86 %	91.93 %
Double track conversions	Secondary	8.01 %	7.98 %
	Fakes	0.13 %	0.09 %

Summary of the purity's computation for single track converted Higgs photons

Higgs	Converted Photon Purity	No Isolation	Isolation
Single track conversions	Signal	96.01 %	96.08 %
	Secondary	1.59 %	1.56 %
	Fakes	2.40 %	2.36 %

Summary of the purity's computation for double track converted Higgs photons

<u>Cuts</u>

- $p_T\gamma$ (leader) >40 GeV and $p_T\gamma$ (Subleader) > 25GeV
- Identification cuts
- $0 < |\eta| < 1.37$, $1.52 < |\eta| < 2.37$

Purity Conv. Photons (yjet sample)

We can evaluate the jet contribution to the total background based on the analysis of converted photons. Also, use this as discrimination variable

Conclusions

- Channel with a weak B.R, but favorite for the low mass Higgs (clean signature at LHC)
- Signal and Background estimation is done with MC.
- Analysis strategy : identification cuts, discrimination variables .
- Large uncertainties to estimate reducible background
 - Pythia Herwig differences
 - Converted Photon analysis will be use
 - More work to do!!!
- At this moment, we have good manipulation of converted photons
- Good purity values have been found for Higgs Signal

backup

more detailed analysis

low mass

radius (mm)

Roughly we need 2 times the statistics to get the same limit at 10 TeV than at 14 TeV $\,$. And an additional factor 2 at 7 TeV

