The ATLAS High-Granularity Timing Detector

Sabrina Sacerdoti on behalf of the HGTD group

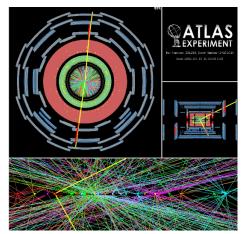
Laboratoire de l'Accélérateur Linéaire IN2P3 institutes involved: LAL, LPNHE, Omega, Clermont-Ferrand

> LLR Seminar 10th of December

Contents

1. Motivation

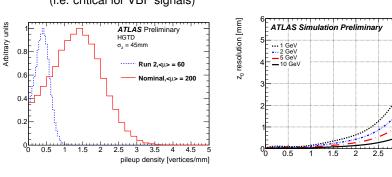
2. The High-Granularity Timing Detector

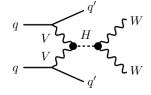

- 3. Performance improvements
 - Object reconstruction
 - Luminosity measurement
- 4. Detector design
 - Time Resolution
 - Sensors
 - Electronics

5. Summary

The High-Luminosity LHC

► The HL-LHC :

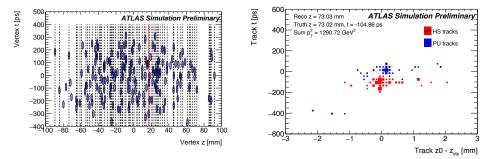

- will start operation in 2026
- instant luminosity $5 7 \times$ nominal
- integrated luminosity 10× LHC
- Pileup is one of the most difficult challenges of the HL-LHC
- ATLAS Upgrade involving
 - new electronics in LAr and Tile
 - improved TDAQ
 - improved muon trigger/tagging
 - ITk: tracking up to $|\eta| = 4.0$
 - HGTD



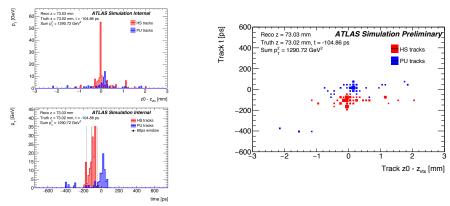
Key aspect for ATLAS analysis: maintain the track-vertex association performance in spite of the harsh environment

Motivation: beam conditions and z_0

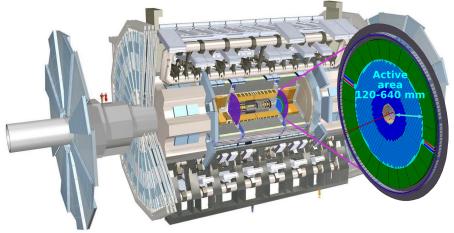
- Increased luminosity at the HL-LHC:
 - expected $\langle \mu \rangle = 200$
 - average interaction density ~ 1.8 vtx/mm
- The z_0 resolution worsens with $|\eta|$:
 - several vertexes could be merged
 - degradation of performance in forward jet reconstruction (i.e. critical for VBF signals)



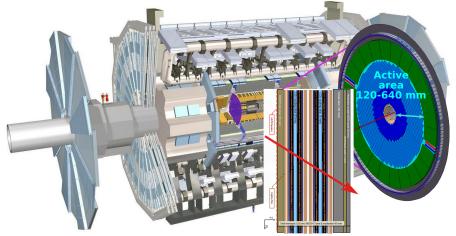
3 35


Motivation: precise timing measurements

- An additional dimension (4D) in existing detectors can provide a new handle on increased interactions per mm
- Expected nominal HL-LHC beam conditions: $\sigma_z = 45$ mm and $\sigma_t = 175$ ps
- Assigning a time to a track with a small enough time resolution would boost the discrimination power of ATLAS (~ 6 times for σ_t = 30 ps)


Motivation: precise timing measurements

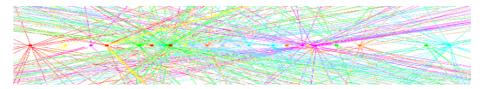
- An additional dimension (4D) in existing detectors can provide a new handle on increased interactions per mm
- Expected nominal HL-LHC beam conditions: $\sigma_z = 45$ mm and $\sigma_t = 175$ ps
- Assigning a time to a track with a small enough time resolution would boost the discrimination power of ATLAS (\sim 6 times for $\sigma_t = 30$ ps)


The High-Granularity Timing Detector

The HGTD will provide time measurements for objects in the forward regions of the ATLAS detector

The High-Granularity Timing Detector

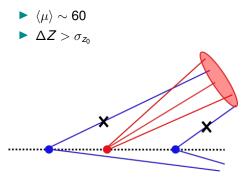
The HGTD will provide time measurements for objects in the forward regions of the ATLAS detector


The HGTD: timing in ATLAS

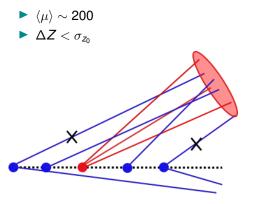
General parameters:

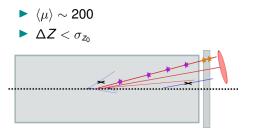
- ▶ 2.4 < |η| < 4.0</p>
- Active area 6.3 m² (total)
- ► Design based on 1.3 × 1.3 mm² silicon pixels (2 × 4 cm² sensors) → optimised for < 10% occupancy and small capacitance</p>
- Radiation hardness up to 5.1 10¹⁵ n_{eq}/cm² and 4.7 MGy
- Number of hits per track:
 - ▶ 2 in 2.4 < |η| < 3.1</p>
 - ▶ 3 in 3.1 < |η| < 4.0</p>
- Inner ring to be replaced at half life-time of HL-LHC

Goal:

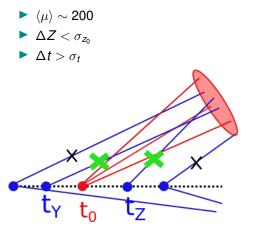

- Resolve close-by vertices
 - small timing resolution (~few 10s of picoseconds).
- Provide minimum bias trigger
- Instantaneous and unbiased luminosity measurement

Performance Studies




 Example: pileup tracks in a forward jet

$$\frac{|z_0-z_{vtx}|}{\sigma_{z_0}} < 2$$

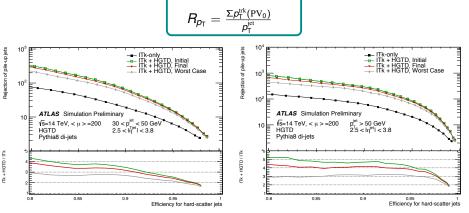

- Example: pileup tracks in a forward jet
- Well separated vertices:

$$rac{|z_0-z_{vtx}|}{\sigma_{z_0}} < 2$$

 Example: pileup tracks in a forward jet

$$rac{|z_0-z_{vtx}|}{\sigma_{z_0}} < 2$$

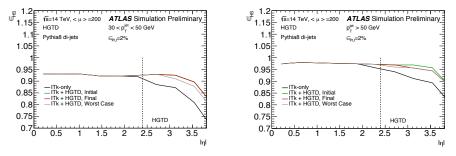
- Example: pileup tracks in a forward jet
- Well separated vertices:


$$\frac{|z_0-z_{vtx}|}{\sigma_{z_0}} < 2$$

Timing information:

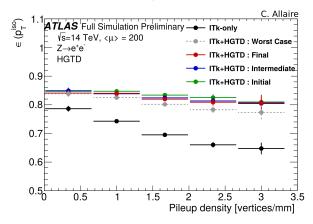
$$rac{|t-t_0|}{\sigma_t} < 2$$

Pileup jet rejection

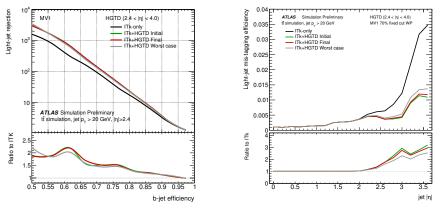

- Tagging pileup jets based on
- Fraction of p_T of a jet coming from PV tracks:

- Improving id of PV0 tracks improves the discrimination power of R_{pT}
- Up to a factor of 4 higher pu-jet rejection with the use of timing information
- More robust pileup rejection

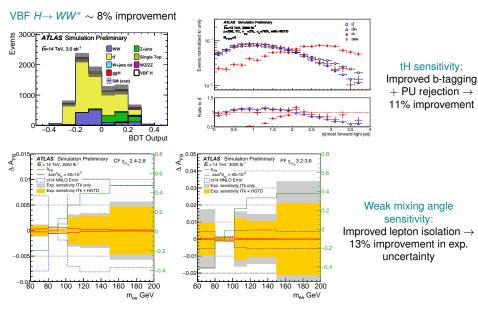
Hard-scatter jet efficiency


- Tagging of jets coming from the HS vertex
- Also using R_{pT}
- Fixed pileup-jet efficiency of 2% (rejection factor of 50)

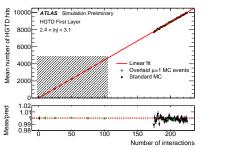
- ▶ The HGTD recovers the 10-30% drop in efficiency observed in the forward region.
- Allows to maintain similar pileup-jet suppression performance as in the central barrel.

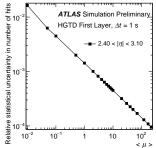

Lepton Isolation

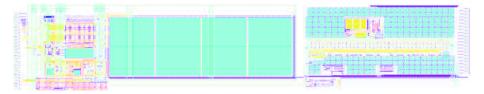
- ► The HGTD can be used to assign a time to leptons in the forward region.
- Isolation efficiency: probability that no track with p_T > 1 GeV is reconstructed within ∆R < 0.2 of the lepton track.</p>


Efficiency above 80% even at higher pileup density

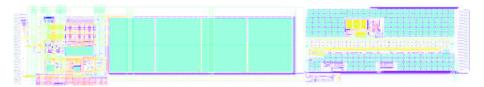
Heavy-flavour tagging

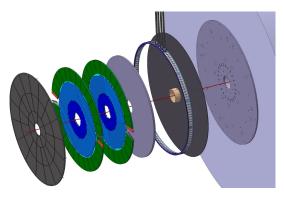

- Addition of the HGTD removes the majority of pileup tracks from the track selection.
- For a b-tagging efficiency of 70%(85%), the light-jet rejection for MV1 is increased by approximate factors 1.5 (1.2)
- The improvement could be higher in processes with more forward b-jets.


Impact in Analyses



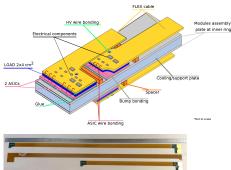
Luminosity measurement

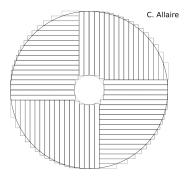

- The luminosity uncertainty could limit the accuracy of some high precision measurements at the HL-LHC
- Need measurement as precise as in Runs I & II (currently 2.4%)
- Key characteristics of HGTD:
 - ► Fast signals → N_{hits} per bunch-crossing
 - High granularity \rightarrow low occupancy $\rightarrow \langle N_{hits} \rangle \propto \langle pp_{int} \rangle$
- Unbiased and high statistics per-BC measurement, available online and offline.



Detector Design

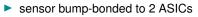
Mechanical Design

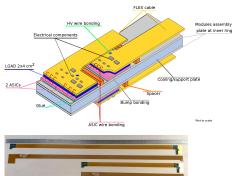


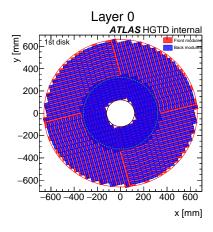

Design challenges:

- Strict spatial constrains:
 - Thickness in Z within 75 mm
 - Allow space for ITk services at R ~ 1 m
 - Cooling services
- ► Thermal isolation: covers must be above condensation temperature (~ 17 °C)
- Weight \sim 350 kg per endcap

HGTD module

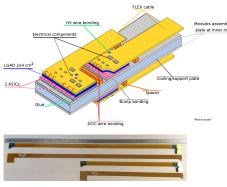

- sensor bump-bonded to 2 ASICs
- wire-bonded to a flex cable (input/output and power)
- placed on support stave

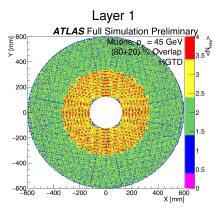



Highly optimised read-out row geometry

HGTD module

- wire-bonded to a flex cable (input/output and power)
- placed on support stave

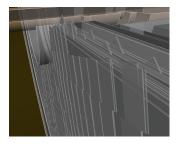


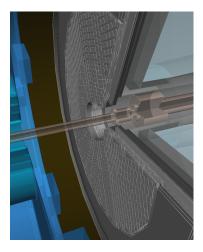


- High overlap up to $R \sim 320$ mm
- Optimized coverage in the edges
- Rotation ±15° improves uniformity

HGTD module

- sensor bump-bonded to 2 ASICs
- wire-bonded to a flex cable (input/output and power)
- placed on support stave





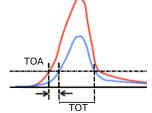
- High overlap up to $R \sim 320$ mm
- Optimized coverage in the edges
- Rotation ±15° improves uniformity

New Geant simulation for TDR

- Geant4 implementation of HGTD geometry for TDR
- Detailed implementation:
 - module: ASIC, active and inactive layers of LGAD, glue
 - different mechanical support structures
 - electronic boards
 - moderator

Contributions to the timing resolution:

$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{\textit{jitter}}^{2} + \sigma_{\textit{clock}}^{2}$$


 $\blacktriangleright \sigma_S$

- Landau fluctuations in the energy deposits of the particles
- non-uniformity of the energy deposit along the particle path; depends on the sensor thickness

Contributions to the timing resolution:

$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{jitter}^{2} + \sigma_{clock}^{2}$$

•
$$\sigma_S$$

• $\sigma_{TW}^2 = [\frac{V_{th}}{S/t_{rise}}]_{RMS} \propto [\frac{N}{dV/dt}]_{RMS}$

- Variations due to differences in the amplitude of the signal.
- Expected to be negligible after applying an offline correction based on measuring the TOT.

Contributions to the timing resolution:

$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{jitter}^{2} + \sigma_{clock}^{2}$$

•
$$\sigma_S$$

• $\sigma_{TW}^2 = [\frac{V_{th}}{S/t_{rise}}]_{RMS} \propto [\frac{N}{dV/dt}]_{RMS}$
• $\sigma_{jitter}^2 = \frac{N}{dV/dt} \sim \frac{t_{rise}}{S/N}$

Variations due to noise in the signal

Contributions to the timing resolution:

$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{jitter}^{2} + \sigma_{clock}^{2}$$

•
$$\sigma_{TW}^2 = \left[\frac{V_{th}}{S/t_{rise}}\right]_{RMS} \propto \left[\frac{N}{dV/dt}\right]_{RMS}$$

•
$$\sigma_{jitter}^2 = \frac{N}{dV/dt} \sim \frac{t_{rise}}{S/N}$$

• σ_{clock}^2 contribution from the clock distribution

- High Frequency: bunch to neighbouring bunch 'jitter'
- Low frequency: drift over longer periods (~ 1 ms), can be corrected offline with calibration
- Expected to be below 10 ps in total

Contributions to the timing resolution:

$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{jitter}^{2} + \sigma_{clock}^{2}$$

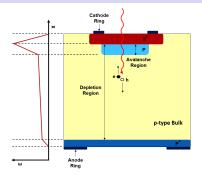
•
$$\sigma_S$$

• $\sigma_{TW}^2 = \left[\frac{V_{th}}{S/t_{rise}}\right]_{RMS} \propto \left[\frac{N}{dV/dt}\right]_{RMS}$
• $\sigma_{jitter}^2 = \frac{N}{dV/dt} \sim \frac{t_{rise}}{S/N}$

• σ_{clock}^2 contribution from the clock distribution < 10 ps

Additional contributions from TDC expected to be negligible.

Contributions to the timing resolution:


$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{jitter}^{2} + \sigma_{clock}^{2}$$

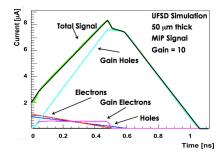
•
$$\sigma_S$$

• $\sigma_{TW}^2 = [\frac{V_{th}}{S/t_{rise}}]_{RMS} \propto [\frac{N}{dV/dt}]_{RMS}$
• $\sigma_{jitter}^2 = \frac{N}{dV/dt} \sim \frac{t_{rise}}{S/N}$

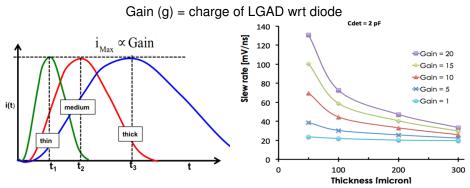
• σ_{clock}^2 contribution from the clock distribution < 10 ps

Total time resolution per track = $\sigma(hit)/\sqrt{N_{hits}}$ goal < 30 ps

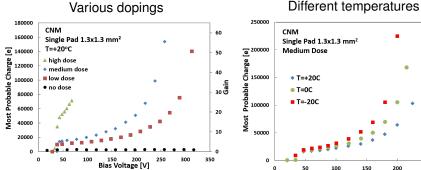
Low Gain Avalanche Diode (LGADs)

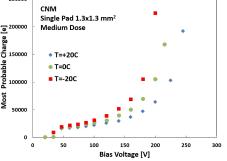


n-on-p planar silicon detectors


- A thin highly-doped p-layer provides an internal gain (10-50)
- Iower noise amplification improves S/N
- excellent timing resolution

- Key aspect: rise time (trise)
- *t_{rise}* ~ 0.5 ns
- Smaller rise time from:
 - thinner pads
 - larger gain


LGAD Gain

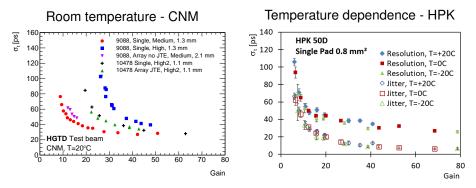

- Independent of the thickness
- 50 μ m is baseline and 35 μ m under study
- Depends on the characteristics of the additional p-layer

LGAD: gain vs bias voltage

CNM (Barcelona) non-irradiated sensors

Various dopings

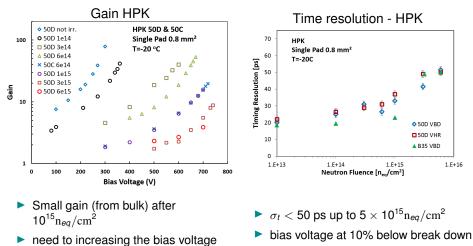
- The gain increases with doping
- Breakdown voltage is lower with higher dose
- Target gain $\sim 10-20$


Operation at low temperature will allow:

- higher gain
- at lower bias voltage
- reduced leakage current after irradiation

Target $\sim -35^{\circ}$ C

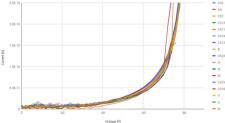
LGAD: time resolution vs gain


CNM (Barcelona) and HPK (Hamamatsu) non-irradiated sensors

- Time resolution of 30 ps achieved for CNM and HPK sensors
- Jitter decreases with gain
- Limited by non-uniformity in energy deposits (σ_s)

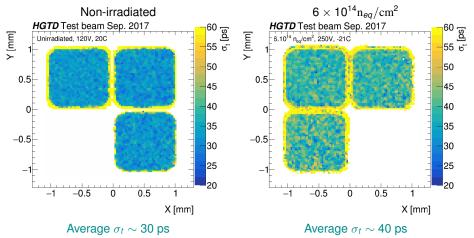
LGAD performance after irradiation

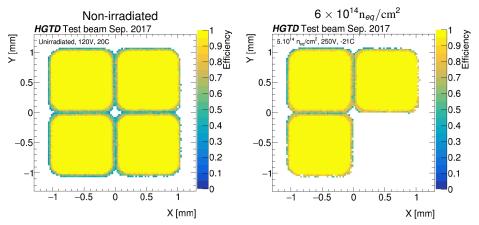
- \blacktriangleright Loss of doping in the gain layer \rightarrow degradation of gain
- faster signal
- increase of leakage current (up to a few μA)



LGAD testing for HGTD

- On-going tests of three vendors: HPK, FBK and CNM
- Testbeam results of single-pad and 2 × 2 sensors
- Radiation hardness: boron/gallium implanted, carbon diffused
- Lab studies on going for 5 × 5 arrays
- ▶ First IV curves obtained for 15 × 15 array


HPK 15x15 W9 LG P1 Blk9 25 Channel IVs (20C)


Test-beam results: time resolution

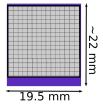
- September 2017 test beam with 120 GeV pions at CERN-SPS
- CNM 2 \times 2 arrays, each pad 1.063 \times 1.063 mm²
- Test-beam 2016 paper available in arxiv 1804.00622

Test-beam results: efficiency

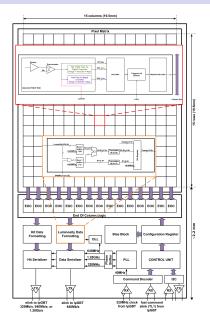
- September 2017 test beam with 120 GeV pions at CERN-SPS
- CNM 2 \times 2 arrays, each pad 1.063 \times 1.063 mm²

- Negligible inefficiency in the centre of the pads.
- Interpad area is not a dead region
- Also: cross-talk mostly negligible/~ 5% in irradiated sensors

ALTIROC ASIC

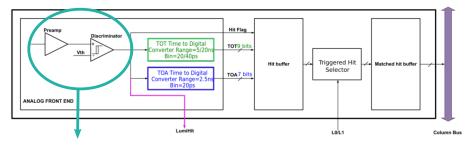

- The LGAD sensors will be read out by the ALTIROC
- specific ASIC designed for the HGTD
 - collaboration between Omega (design) and LAL (characterisation/test-beam)
- Bump-bonded to the sensor, it will read out 225 channels

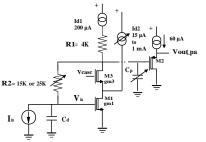
Requirements:


- ▶ Keep the excellent time resolution of the LGADs, σ_{el} < 25 ps
- Cope with a trigger latency of 10/35 µs for L0/L1 trigger
- TDC conversion within 25 ns
- Power consumption constrained by cooling power (sensors at -35 ℃)
- radiation hard

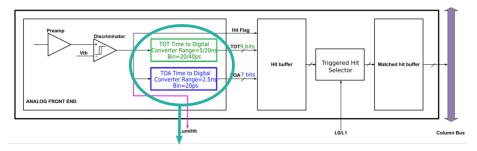
Development:

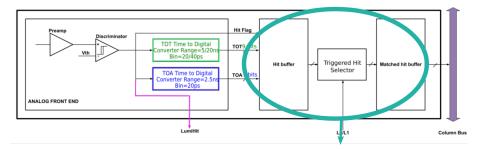
- ALTIROC0 single channel analog readout
- ALTIROC1 5 × 5 analog + digital channel readout
- ALTIROC2 15 × 15 expected submission end of 2019




ASIC architecture

- single pixel readout (15 × 15)
- Iuminosity formatting block
- end-of-column logic
- off-pixel electronics:
 - Handling of input/output signals to peripheral electronics
 - clock distribution


Single-pixel architecture


- Baseline: voltage sensitive preamplifier
- C_p to vary the signal speed
- Optimise trise to match the drift time of the sensor (0.5-1) ns to minimise jitter
- Fixed threshold discriminator
- Tested in ALTIROC0

Single-pixel architecture

- Time Of Arrival TDC (20 ps bin/2.5 ns range)
- Time Over Threshold TDC (40 ps bin/20 ns range)
- signal is also sent to the luminosity formatting unit
- ALTIROC1 tests started

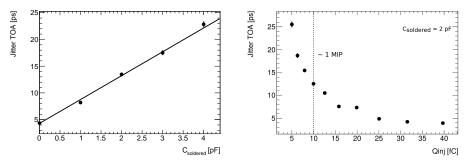
Single-pixel architecture

- store hit information until trigger
- select hit
- store until transfer
- First simple SRAM implemented in ALTIROC1

ALTIROC0 - ALTIROC1

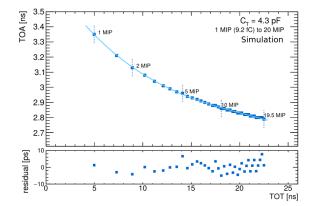
Tests on-going on both ASIC iterations:

- 2 × 2 channels
- Analog readout electronics:
 - preamplifier
 - discriminator
- Voltage/VPA and transimpedance/TZ studied
- Bump-bonded to an LGAD sensor (testbeam)

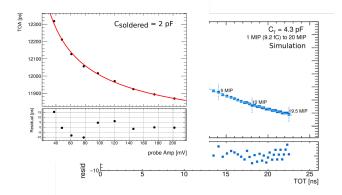


- ▶ 5 × 5 channels
- Same pramp+discri, added digital:
 - TOA and TOT TDCs
 - SRAM
- Phase shifter (independent)
- SC parameters transmited through PCI by an independent FPGA board → irradiation tests

Preamplifier Jitter

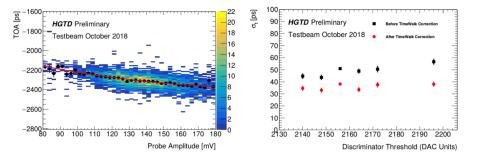

- Varies with the capacitance seen by the ASIC (board and sensor/soldered)
- Achieved jitter of \sim 13 ps for $C_{soldered} = 2 \text{ pF}$ (total $C \sim 5 \text{ pF}$)
- Sensor expected to provide at least 5 fC

*generator jitter of 6 ps subtracted in both measurements

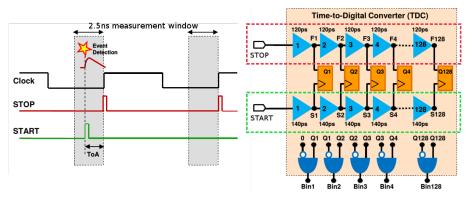

Time Walk correction

- Using measurement of the TOT (estimator of the pulse amplitude)
- Expected residual difference between simulation and measurement < 10 ps</p>

Time Walk correction


- Using measurement of the TOT (estimator of the pulse amplitude)
- Expected residual difference between simulation and measurement < 10 ps</p>

- ALTIROC0 showed good performance by itself but suffered from coupling that affected the TOT measurement when connected to the sensor.
- TW correction performes using the probe amplitude studies on-going


Testbeam performance

- ALTIROC0 bump-bonded to a non-irradiated LGAD
- ► TOT correction estimated using probe amplitude (∝ preamplifier signal) → 30% improvement
- Time resolution corrected for time-walk \sim 35 ps.

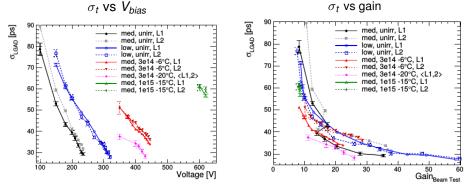
Time-to-Digital Converter

- Achieves a 20 ps resolution by combining two lines of fast (120 ps) and slow (140 ps) cells
- Vernier delay line configuration with a reverse START-STOP scheme
- Power saving: no consumption if no hit
- Implemented in ALTIROC1 tests started!

Count the number of cells it takes for the stop signal to surpass the start signal.

Summary

- The HGTD is a Phase-II upgrade ATLAS project that will provide timing capability in the forward region.
- Compromise in the detector layout:
 - spatial/monetary constrains
 - goal to guarantee 3 hits per track for smaller radius (high η) and ~ 30 ps resolution per track
- Performance studies:
 - have shown potential of having timing information in the forward region to improve pileup rejection
 - more complex studies could show further impact in analyses
- Aspects of the detector design to be demonstrated:
 - LGAD's radiation hardness needs to be tested up to 5.1 10¹⁵ n_{eq}/cm² (1.5 10¹⁵ n_{eq}/cm² tested so far)
 - validation of ASIC's demanding performance with a TDC, connected to a sensor (ALTIROC1)
 - optimisation of services given the small space available

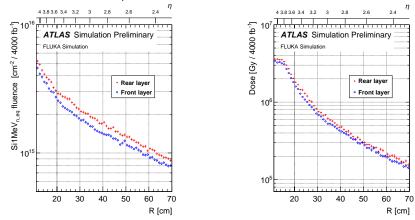

- Technical Proposal successfully reviewed by LHCC in June 2018
- Next major step: submission of the Technical Design Report by April 2019, where the technical feasibility of the detector should be demonstrated

BACK UP

Overview of test beam results

- Several test beam campaigns since 2016 (sensors from CNM and HPK).
- Achieved time resolution below 30 ps

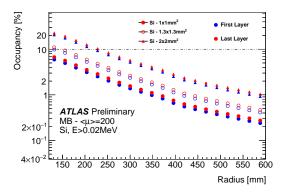
CNM - 45 μ m thick single pads¹


Strong decrease of σ_t with V_{bias} ($\sigma_t < 30$ ps at 235/320 V in non-irrad. sensors)

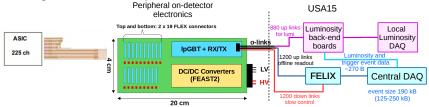
- Irradiated sensors tested at different temperatures.
- Decrease of σ_t with gain. Studies point to a safe gain of 10-20.

¹results from J. Lange et al.; similar results in sensors from FBK

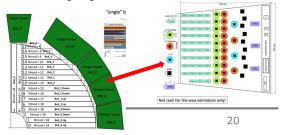
Radiation Levels


- Irradiation levels studied using FLUKA simulations
- Additional safety factors: 1.5 uncertainty in sim, 1.5 unc in electronics behaviour
 - \rightarrow 1.5 for fluene and 2.25 for dose
- Updated studies show an increase of \sim 30% wrt TP: 5.1 \times 10¹5 n_{eq}/cm^2 and 4.7 MGy

Pixel Size

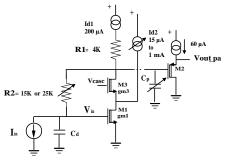

The definition of the size of the pixel is a result of several considerations, mainly:

- The need to keep occupancy low (below 10%)
- ► A small detector capacitance reduces noise, $C = \epsilon_r \epsilon_0 A / w$

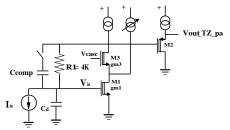


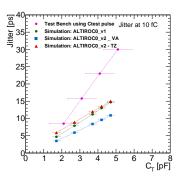
Readout Path

General design of the readout path from the ASIC to USA15:

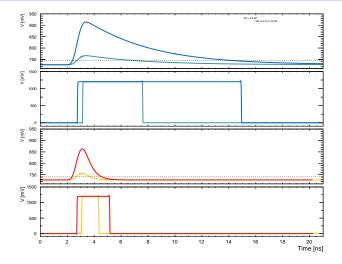


One of the main challenges: design of on-detector board. More realistic designs already available, studies on-going:

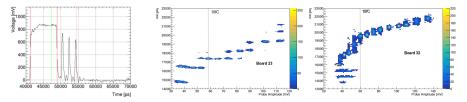



Voltage/Transimpedance preamplifier: schematics

Voltage Preamplifier

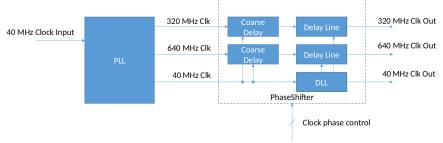

Transimpedance Preamplifier

- Difference btw measurement and simulated jitter attributed to different noise
- Lower jitter in v2
- Jitter in TZ larger than in VPA

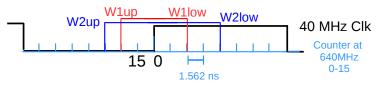

Voltage/Transimpedance preamplifier: pulse simulation

TZ preamplifier gives a faster, lower amplitude pulse than VPA.

In ALTIROC0, it was not possible to achieve a good measurement of the TOE when the ASIC is bump-bonded to an LGAD (and thus it is not possible to make a TW correction using the TOT):

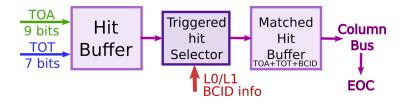

- TOE scales discretely with probe amplitude
- Re-triggering effect obserbed
- Suspected causes: coupling between discriminator output and preamplifier input
- Improvement: new ALTIROC0 PCB, with larger HV pad for wire bonding. Expected further improvement in ALTIROC1.

Off-pixel electronics - Phase shifter


The inner clocks of the ASIC have to be in phase, with an accuracy \sim 100ps, in order to:

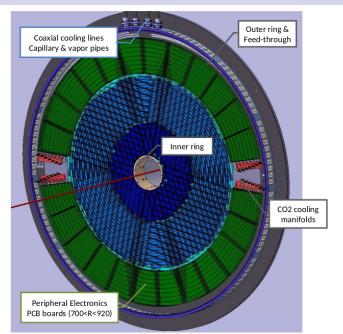
- ensure the correct time conversion of the TDC
- correctly adjust the time windows necessary to measure the luminosity Characteristics:
 - Receives clocks at 40, 320 and 640 MHz from the PLL
 - Output phase adjusted to a step smaller than 100 ps
 - Additional jitter below 5 ps
 - Estimated power consumption around 10 mW
 - Design is ongoing

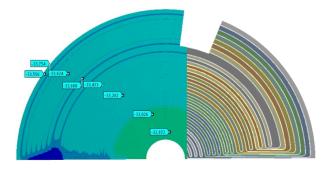
Off-pixel electronics - Luminosity


- *L* is linearly proportional to N_{hits}
- Non-linearities arise from:
 - double hits \rightarrow low occupancy
 - ▶ background noise (*afterglow*)→ compare N_{hits} in a smaller and wider time window around the BC

- Two time windows, W2>W1
- Rising and falling edges of both windows are tunable
- Transmit the sum of hits per ASIC for each BC
- Only for ASICs at R > 320 mm
- The sum over ASICs is computed in 64 regions and saved.

Single pixel memory


Temporarily store hit data and select hits associated to a trigger.


Baseline design is to use full buffering, storing TOA+TOT/hit flag:

- Handle 10/35µs latency for L0/L1 trigger
- Small space
- Limited power consumption
- SEU
- Alternative design: partial buffering

Services

CO₂ cooling

J. Bonis-A. Fallou

Several challenges:

- ► LGAD sensors need to be kept at low temperature at all times (-30 °C)
- CO₂ cooling will be used
- Finite element analysis: temperature distribution of (27 ± 1) °C
- possible to have the vessel walls > 18 °C using heaters