On multiplicities of irreducibles in large tensor product of representations of simple Lie algebras

Asymptotic representation theory of S_{N}

The study of statistics in "large" natural representations goes back to works of Vershik-Kerov [1],[2] and Logan-Shepp[3]. They studied statistics of irreducible components for Plancherel measure for the symmetric group S_{N} as $N \rightarrow \infty$.
Representations of symmetric group are parametrized by Young diagrams $\boldsymbol{\lambda}=\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \ldots \boldsymbol{\lambda}_{n}\right)$.
The dimension of irreducible representation of symmetric group is given by hook-length formula:

$$
\begin{equation*}
\operatorname{dim} \tau_{\lambda}=\frac{N!}{\prod \boldsymbol{h}_{(i, j)}}, \tag{1}
\end{equation*}
$$

where the product is taken over cells $(\boldsymbol{i}, \boldsymbol{j})$ of $\boldsymbol{\lambda}$. The Plancherel measure

$$
\begin{equation*}
P^{(N)}(\lambda)=\frac{\left(\operatorname{dim} \tau_{\lambda}\right)^{2}}{N!} . \tag{2}
\end{equation*}
$$

To each $\boldsymbol{\lambda}$ it is possible to associate a broken line function $\boldsymbol{\lambda}(\boldsymbol{u})$ by switching from coordinates (i, j) to coordinates (u, v)

$$
\begin{equation*}
u=\frac{j-i}{\sqrt{N}} \quad v=\frac{j+i}{\sqrt{N}} . \tag{3}
\end{equation*}
$$

Then the border of the diagram λ can be represented as the broken line function $\lambda(u)$.

Figure 1: Young diagram
Vershik and Kerov [1],[2] have shown that as $\boldsymbol{N} \rightarrow \infty$ the broken line $\boldsymbol{\lambda}(\boldsymbol{u})$ converges in probability to the limit continuous function $\Omega(u)$

$$
\begin{equation*}
\Omega(u)=\frac{2}{\pi}\left(x \arcsin \frac{u}{2}+\sqrt{4-u^{2}}\right),|u| \leq 2, \quad \Omega(u)=|u|,|u| \geq 2 \tag{4}
\end{equation*}
$$

Figure 2: Large Young diagram

Probability measure on the tensor products of modules for Lie algebra \boldsymbol{A}_{n}

Consider the space of tensors $V_{N, n}=\otimes_{k=1}^{N} C^{n}$. In this space the symmetric group S_{N} acts by permutation of components and the Lie group $G \boldsymbol{L}(\boldsymbol{n})$ acts on each component. Due to Schur-Weyl duality

$$
\begin{equation*}
V_{N, n}=\bigoplus_{\lambda \in Y_{N, n}} V_{\lambda}^{S_{N}} \otimes V_{\lambda}^{G L(n)} \tag{5}
\end{equation*}
$$

where $\boldsymbol{Y}_{N, n}$ is the space of Young diagrams with \boldsymbol{N} boxes and no more than n rows. On this space the Plancherel-type measure can be introduced:

$$
\begin{equation*}
\mu^{(N)}(\lambda)=\frac{\operatorname{dim} \pi_{\lambda} \operatorname{dim} \tau_{\lambda}}{n^{N}} \tag{6}
\end{equation*}
$$

where $\operatorname{dim} \tau_{\lambda}$ is the dimension of the irreducible representation of S_{N}, and $\operatorname{dim} \pi_{\lambda}$ is the dimension of the irreducible representation of $G L(n)$. Asymptotic of this measure was studied in [4],[5].

- Biane [5] studied asymptotic at $N, n \rightarrow \infty$ with $\frac{\sqrt{N}}{n}=c$ - fixed constant. He found that the shape of Young diagrams converge in probability to the continuous limit curve $\Omega(c, u)$ which depends on the value of c.

Figure 3: Limit shapes of Young diagrams for different values of c
Kerov [4] studied asymptotic at $N \rightarrow \infty$ with \boldsymbol{n} - fixed. He found that the measures $\boldsymbol{\mu}^{(N)}(\boldsymbol{\lambda})$ converge weakly to the continuous measure

$$
\begin{equation*}
\phi_{n}(x)=\frac{n^{\frac{n(n-1)}{2}}}{1!2!\ldots(n-1)!}\left(\frac{n}{2 \pi}\right)^{\frac{(n-1)}{2}} \prod_{i \leq j}\left(x_{i}-x_{j}\right)^{2} e^{-\frac{n}{2} \sum_{k} x_{k}^{2}}, \tag{7}
\end{equation*}
$$

where $x_{k}=\frac{\lambda_{k}-\frac{N}{N}}{\sqrt{N}}, k=1,2, \ldots n$ are the specific values of row length of diagram $\boldsymbol{\lambda}$. The vector $x=\left(x_{1}, \ldots{ }_{n}\right)$ lies in the hyper plane $\boldsymbol{H}_{n}=\left\{x \mid \sum_{k=1}^{n} x_{k}=0\right\}$

Probability measure on the tensor products of modules for Lie algebra B_{n}

- Nazarov, Postnova[6] studied the asymptotic $N \rightarrow \infty$ with n-fixed for the Plancherel-type measure for modules of Lie algebra \boldsymbol{B}_{n}
The decomposition of tensor powers of the spinor fundamental module $\boldsymbol{V}_{\boldsymbol{\omega}_{n}}$ of Lie algebra \boldsymbol{B}_{n} :

$$
\begin{equation*}
V_{\omega_{n}}^{\otimes N} \cong \bigoplus_{\lambda} W_{\lambda}(N) \otimes L^{\lambda}, \tag{8}
\end{equation*}
$$

here $\boldsymbol{L}_{\boldsymbol{\lambda}}$ is the irreducible representation with the highest weight $\boldsymbol{\lambda}$ and
$W_{\lambda}(N) \simeq \operatorname{Hom}_{\mathfrak{g}}\left(L^{\lambda}, V_{\omega_{n}}^{\otimes N}\right)$.
The dimension $M_{\lambda}(N)=\operatorname{dim} W_{\lambda}(N)$ is the multiplicity of L^{λ} in the tensor product decomposition. The Plancherel-type probability measure $\mu_{\lambda}^{(N)}$ on the space of the dominant integral weights λ :

$$
\begin{equation*}
\mu_{\lambda}^{(N)}=\frac{M_{\lambda}(N) \operatorname{dim} L^{\lambda}}{\operatorname{dim} V_{\omega_{n}}^{N}} . \tag{9}
\end{equation*}
$$

In the limit $N \rightarrow \infty$ with fixed n these measures converge weakly to the continuous measure with the probability density function:

$$
\begin{equation*}
\phi\left(\left\{x_{i}\right\}\right)=\prod_{i<j}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{l=1}^{n} x_{l}^{2} \exp \left(-\frac{1}{2} \sum_{k} x_{k}^{2}\right) \cdot \frac{2^{2 n} n!}{(2 n)!(2 n-2)!\ldots 2!}, \tag{10}
\end{equation*}
$$

where $x_{i}=\frac{1}{\sqrt{N}} a_{i}$ and $a_{i}=\lambda_{i}+\rho_{i}$ are the shifted Euclidean coordinates on weight space of B_{n}, where ρ is the Weyl vector.

Large tensor products of representations of simple Lie algebras

Let \mathfrak{g} be a simple Lie algebra, $V_{i}, \quad i=1 \ldots m$ be its finite dimensional representations and $N_{k} \geq 0$ be integers. Any finite dimensional representation of a simple Lie algebra is completely reducible and therefore:

$$
\begin{equation*}
\bigotimes_{k=1}^{m} V_{k}^{\otimes N_{k}} \cong \bigoplus_{\lambda} W_{\lambda}\left(\left\{V_{k}\right\},\left\{N_{k}\right\}\right) \otimes V_{\lambda} . \tag{11}
\end{equation*}
$$

The sum is taken over irreducible components of the tensor product, $\boldsymbol{V}_{\boldsymbol{\lambda}}$ is the irreducible \mathfrak{g}-module with the highest weight λ and $W_{\lambda}\left(\left\{V_{k}\right\},\left\{N_{k}\right\}\right)$ is the "space of multiplicities":

$$
\begin{equation*}
W_{\lambda}\left(\left\{V_{k}\right\},\left\{N_{k}\right\}\right) \simeq \operatorname{Hom}_{\mathfrak{g}}\left(\bigotimes_{k=1}^{m} V_{k}^{\otimes N_{k}}, V_{\lambda}\right) . \tag{12}
\end{equation*}
$$

Its dimension $m_{\lambda}\left(\left\{V_{k}\right\},\left\{N_{k}\right\}\right)$ is the multiplicity of V_{λ} in the tensor product. We assume $V_{k}=V_{\nu_{k}}$, otherwise $V_{k} \simeq \oplus V_{\nu}^{\oplus}$
Choose a Borel subalgebra $\in \mathfrak{g}$ and let Δ_{+}be corresponding positive roots, \mathfrak{h} be the corresponding Cartan subalgebra and $\alpha_{1}, \ldots, \alpha_{r}$ be enumerated fundamental roots. Here $r=\operatorname{rank}(\mathfrak{g})=\operatorname{dim}(\mathfrak{h})$ is the rank of the Lie algebra \mathfrak{g}. Let $\mathfrak{g}_{\mathbb{R}}$ be the split real form of \mathfrak{g} and \mathfrak{h} be its Cartan subalgebra.

We study the asymptotic behavior of multiplicities m_{λ} in the limit when $N_{k} \rightarrow \infty$ and $\lambda \rightarrow \infty$ such that $N_{k}=\tau_{k} / \epsilon$ and $\lambda=\xi / \epsilon, \epsilon \rightarrow 0$, where $\tau_{k} \in_{\geq 0}$ and $\xi \in \mathfrak{h}_{\geq 0}^{*}$.

Asymptotic of the multiplicity function

If $\boldsymbol{\xi}=\boldsymbol{\epsilon} \boldsymbol{\lambda}$ remain regular as $\boldsymbol{\epsilon} \rightarrow \mathbf{0}$ the asymptotic of the multiplicity has the following form

$$
\begin{equation*}
m_{\lambda}\left(\left\{V_{k}\right\},\left\{N_{k}\right\}\right)=\epsilon^{\frac{r}{2}} \frac{\sqrt{\operatorname{det} K}}{(2 \pi)^{\frac{r}{2}}} \Delta(x) e^{-(\rho, x)} e^{\frac{1}{\epsilon} S(\tau, \xi)}(1+\mathcal{O}(\epsilon)) \tag{13}
\end{equation*}
$$

Here $\boldsymbol{x} \in \mathfrak{h}$ is the Legendre image of $\boldsymbol{\xi} \in \mathfrak{h}^{*}, \boldsymbol{\Delta}(\boldsymbol{x})$ is the denominator in the Weyl formula for characters:

$$
\Delta(x)=\prod_{\alpha \in \Delta_{+}}\left(e^{\frac{(x, \alpha)}{2}}-e^{-\frac{(x, \alpha)}{2}}\right)
$$

The function $S(\tau, \xi)$ is the Legendre transform of the function

$$
\begin{equation*}
f(\tau, x)=\sum_{k} \tau_{k} \ln \left(\chi_{\nu_{k}}\left(e^{x}\right)\right) \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
S(\tau, \xi)=\min _{y}(f(\tau, y)-(y, \xi))=f(\tau, x)-(x, \xi), \tag{15}
\end{equation*}
$$

where $(\boldsymbol{y}, \boldsymbol{\xi})=\sum_{a b} \boldsymbol{y}_{a} \boldsymbol{B}_{a b} \xi_{b}$ and \boldsymbol{x} is the critical point where the minimum is achieved. It is the unique solution to the equation:

$$
\begin{equation*}
\frac{\partial}{\partial x_{a}} f(\tau, x)=\sum_{b} B_{a b} \xi_{b} . \tag{16}
\end{equation*}
$$

The matrix \boldsymbol{K} is defined as

$$
\begin{align*}
K_{a c} & =\sum_{b, d} B_{a d}\left(D^{-1}\right)_{d b} B_{b c} \tag{17}\\
D_{a b} & =\left.\frac{\partial^{2}}{\partial y_{a} \partial y_{b}} f(\tau, y)\right|_{y=x} \tag{18}
\end{align*}
$$

where \boldsymbol{x} is as above

Asymptotic of probability measure

When $g=e^{t}, \quad t \in \subset \mathfrak{h}_{\mathbb{R}} \subset \mathfrak{g}_{\mathbb{R}}$ the characters $\chi_{\nu_{k}}\left(e^{t}\right)$ and $\chi_{\lambda}\left(e^{t}\right)$ are positive and as a consequence of the tensor product decomposition we have the identity

$$
\begin{equation*}
\prod_{k} \chi_{\nu_{k}}\left(e^{t}\right)^{N_{k}}=\sum_{\lambda} m_{\lambda}\left(\left\{V_{k}\right\},\left\{N_{k}\right\}\right) \chi_{\lambda}\left(e^{t}\right) \tag{19}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
p_{\lambda}=\frac{m_{\lambda}\left(\left\{V_{k}\right\},\left\{N_{k}\right\}\right) \chi_{\lambda}\left(e^{t}\right)}{\prod_{k} \chi_{\nu_{k}}\left(e^{t}\right)^{)_{k}}} . \tag{20}
\end{equation*}
$$

is a natural probability measure on irreducible components of tensor product: $p_{\lambda} \geq 0$ and $\sum_{\lambda} p_{\lambda}=1$.
The extreme non regular case is when $t=0$. In this case the probability distribution is given by

$$
\begin{equation*}
p_{\lambda}=\frac{m_{\lambda}\left(\left\{V_{k}\right\},\left\{N_{k}\right\}\right) \operatorname{dim}\left(V_{\lambda}\right)}{\prod_{k} \operatorname{dim}\left(V_{\nu_{k}}\right)^{N_{k}}} . \tag{21}
\end{equation*}
$$

By the analogy with the left regular representation of a compact group we will call it Plancherel measure.

1. If $\xi=\epsilon \boldsymbol{\lambda}$ remain regular as $\epsilon \rightarrow 0$ and t is regular, the asymptotic of the the probability p_{λ} as $\epsilon \rightarrow 0$ is:
where $\widetilde{S}(\tau, \xi)=S(\tau, \xi)-f(\tau, t)+(t, \xi)$. The exponent has maximum at η which the Legendre image of t and $\widetilde{S}(\tau, \eta)=0$.
2. Ift is regular, the asymptotic probability distribution is localized at point η with a Gaussian distribution around this point. If we rescale random variable $\boldsymbol{\xi}$ near the critical point η as $\xi=\eta+\sqrt{\boldsymbol{\epsilon}} \boldsymbol{a}$, then in the limit $\epsilon \rightarrow \mathbf{0}$ the random variable $\boldsymbol{a} \in \mathbb{R}^{r}$ is distributed as

$$
\begin{equation*}
p(a)=\frac{\sqrt{\operatorname{det} K}}{(2 \pi)^{\frac{\pi}{2}}} e^{-\frac{1}{2} \sum_{b c} a_{b} K_{b c} a_{c}} \tag{23}
\end{equation*}
$$

As $\epsilon \rightarrow 0$ the Plancherel Theorem

$$
p(a)=\frac{\sqrt{\operatorname{det}(B)}}{(2 \pi)^{\frac{r}{2}}} \prod_{\alpha>0} \frac{(a, \alpha)^{2}}{(\rho, \alpha)} e^{-\frac{1}{2} \sum_{b, c} a_{b} B_{b c} a_{c}} d a
$$

