On multiplicities of irreducibles in large tensor product of representations of simple Lie algebras

Olga Postnova¹, Nicolai Reshetikhin²

¹Laboratory of Mathematical Problems of Physics, St. Petersburg Department of Steklov Mathematical Institute, 191023, Fontanka 27, St. Petersburg, Russia; ²Department of Mathematics, University of California, Berkeley, CA 94720, USA & Physics Department, St. Petersburg University, Russia &KdV Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam

Asymptotic representation theory of S_N

The study of statistics in "large" natural representations goes back to works of Vershik-Kerov [1],[2] and Logan-Shepp[3]. They studied statistics of irreducible components for Plancherel measure for the symmetric group S_N as $N o \infty$.

Representations of symmetric group are parametrized by Young diagrams $\lambda = (\lambda_1, \lambda_2, \dots \lambda_n)$.

The dimension of irreducible representation of symmetric group is given by hook-length formula:

$$\dim \tau_{\lambda} = \frac{N!}{\prod h_{(i,j)}},\tag{1}$$

where the product is taken over cells (i,j) of λ . The Plancherel measure:

$$P^{(N)}(\lambda) = \frac{(\dim \tau_{\lambda})^2}{N!}.$$
 (2)

To each λ it is possible to associate a broken line function $\lambda(u)$ by switching from coordinates (i,j) to coordinates (u, v):

 $u=rac{j-i}{\sqrt{N}} \hspace{0.5cm} v=rac{j+i}{\sqrt{N}}.$ (3)

Then the border of the diagram λ can be represented as the broken line function $\lambda(u)$.

Figure 1: Young diagram

Vershik and Kerov [1],[2] have shown that as $N \to \infty$ the broken line $\lambda(u)$ converges in probability to the limit continuous function $\Omega(u)$:

$$\Omega(u)=rac{2}{\pi}\left(xrcsinrac{u}{2}+\sqrt{4-u^2}
ight),\;|u|\leq 2,\quad \Omega(u)=|u|,\;|u|\geq 2$$
 (4)

Figure 2: Large Young diagram

Probability measure on the tensor products of modules for Lie algebra A_n

Consider the space of tensors $V_{N,n}=\otimes_{k=1}^N C^n$. In this space the symmetric group S_N acts by permutation of components and the Lie group GL(n) acts on each component. Due to Schur-Weyl duality

$$V_{N,n} = \bigoplus_{\lambda \in Y_{N,n}} V_{\lambda}^{S_N} \otimes V_{\lambda}^{GL(n)},$$
 (5)

where $Y_{N,n}$ is the space of Young diagrams with N boxes and no more than n rows. On this space the Plancherel-type measure can be introduced:

$$\mu^{(N)}(\lambda) = \frac{\dim \pi_{\lambda} \dim \tau_{\lambda}}{n^{N}},\tag{6}$$

where $\dim \tau_{\lambda}$ is the dimension of the irreducible representation of S_N , and $\dim \pi_{\lambda}$ is the dimension of the irreducible representation of GL(n). Asymptotic of this measure was studied in [4],[5].

Biane [5] studied asymptotic at $N,n o\infty$ with $rac{\sqrt{N}}{n}=c$ - fixed constant. He found that the shape of Young diagrams converge in probability to the continuous limit curve $\Omega(c,u)$ which depends on the value of $oldsymbol{c}$.

Figure 3: Limit shapes of Young diagrams for different values of c

lacktriangle Kerov [4] studied asymptotic at $N o\infty$ with n - fixed. He found that the measures $\mu^{(N)}(\lambda)$ converge weakly to the continuous measure

$$\phi_n(x) = \frac{n^{\frac{n(n-1)}{2}}}{1!2!\dots(n-1)!} \left(\frac{n}{2\pi}\right)^{\frac{(n-1)}{2}} \prod_{i\leq j} (x_i - x_j)^2 e^{-\frac{n}{2}\sum_k x_k^2},\tag{7}$$

where $x_k = \frac{\lambda_k - \frac{N}{n}}{\sqrt{N}}, k = 1, 2, \dots n$ are the specific values of row length of diagram λ . The vector $x=(x_1,\ldots_n)$ lies in the hyper plane $H_n=\{x|\sum_{k=1}^n x_k=0\}$

Probability measure on the tensor products of modules for Lie algebra B_n

Nazarov, Postnova[6] studied the asymptotic $N o \infty$ with n-fixed for the Plancherel-type measure for modules of Lie algebra B_n .

The decomposition of tensor powers of the spinor fundamental module V_{ω_n} of Lie algebra B_n :

$$V_{\omega_n}^{\otimes N} \cong \bigoplus_{\lambda} W_{\lambda}(N) \otimes L^{\lambda},$$
 (8)

here L_{λ} is the irreducible representation with the highest weight λ and $W_{\lambda}(N) \simeq \operatorname{Hom}_{\mathfrak{g}}(L^{\lambda}, V_{\omega_n}^{\otimes N}).$

The dimension $M_{\lambda}(N) = \dim W_{\lambda}(N)$ is the multiplicity of L^{λ} in the tensor product decomposition. The Plancherel-type probability measure $\mu_{\lambda}^{(N)}$ on the space of the dominant integral weights λ :

$$\mu_{\lambda}^{(N)} = \frac{M_{\lambda}(N) \text{dim} L^{\lambda}}{\text{dim} V_{\omega_n}^N}.$$
 (9)

In the limit $N o \infty$ with fixed n these measures converge weakly to the continuous measure with the probability density function:

$$\phi\left(\{x_i\}\right) = \prod_{i < j} (x_i^2 - x_j^2)^2 \prod_{l=1}^n x_l^2 \exp\left(-\frac{1}{2} \sum_k x_k^2\right) \cdot \frac{2^{2n} n!}{(2n)! (2n-2)! \dots 2!}, \quad (10)$$

where $x_i=rac{1}{\sqrt{N}}a_i$ and $a_i=\lambda_i+
ho_i$ are the shifted Euclidean coordinates on weight space of B_n , where ho is the Weyl vector.

Large tensor products of representations of simple Lie algebras

Let ${\mathfrak g}$ be a simple Lie algebra, $V_i, \quad i=1\dots m$ be its finite dimensional representations and $N_k\geq 0$ be integers. Any finite dimensional representation of a simple Lie algebra is completely reducible and therefore:

$$\bigotimes_{k=1}^{m} V_k^{\otimes N_k} \cong \bigoplus_{\lambda} W_{\lambda}(\{V_k\}, \{N_k\}) \otimes V_{\lambda}. \tag{11}$$

The sum is taken over irreducible components of the tensor product, V_{λ} is the irreducible \mathfrak{g} -module with the highest weight λ and $W_{\lambda}(\{V_k\},\{N_k\})$ is the "space of multiplicities":

$$W_{\lambda}(\{V_k\},\{N_k\}) \simeq \operatorname{Hom}_{\mathfrak{g}}(\bigotimes_{k=1}^m V_k^{\otimes N_k},V_{\lambda}).$$
 (12)

Its dimension $m_\lambda(\{V_k\},\{N_k\})$ is the **multiplicity** of V_λ in the tensor product. We assume $V_k=V_{
u_k}$, otherwise $V_k \simeq igoplus V_
u^{\oplus m_{
u,k}}$.

Choose a Borel subalgebra $\in \mathfrak{g}$ and let Δ_+ be corresponding positive roots, \mathfrak{h} be the corresponding Cartan subalgebra and $lpha_1,\ldots,lpha_r$ be enumerated fundamental roots. Here $r=rank(\mathfrak{g})=dim(\mathfrak{h})$ is the rank of the Lie algebra \mathfrak{g} . Let $\mathfrak{g}_{\mathbb{R}}$ be the split real form of \mathfrak{g} and \mathfrak{h} be its Cartan subalgebra.

We study the asymptotic behavior of multiplicities m_λ in the limit when $N_k \to \infty$ and $\lambda \to \infty$ such that $N_k= au_k/\epsilon$ and $\lambda=\xi/\epsilon,\ \ \epsilon\to 0$, where $au_k\in_{>0}$ and $\xi\in\mathfrak{h}^*_{>0}$.

Asymptotic of the multiplicity function

Theorem

If $\xi=\epsilon\lambda$ remain regular as $\epsilon o 0$ the asymptotic of the multiplicity has the following form

$$m_{\lambda}(\{V_k\},\{N_k\}) = \epsilon^{\frac{r}{2}} \frac{\sqrt{\det K}}{(2\pi)^{\frac{r}{2}}} \Delta(x) e^{-(\rho,x)} e^{\frac{1}{\epsilon}S(\tau,\xi)} (1+\mathcal{O}(\epsilon))$$
(13)

Here $x \in \mathfrak{h}$ is the Legendre image of $\xi \in \mathfrak{h}^*$, $\Delta(x)$ is the denominator in the Weyl formula for characters:

$$\Delta(x) = \prod_{lpha \in \Delta_+} (e^{rac{(x,lpha)}{2}} - e^{-rac{(x,lpha)}{2}})$$

The function $S(\tau, \xi)$ is the Legendre transform of the function

$$f(\tau, x) = \sum_{k} \tau_k \ln(\chi_{\nu_k}(e^x)). \tag{14}$$

$$S(\tau, \xi) = \min_{y} \left(f(\tau, y) - (y, \xi) \right) = f(\tau, x) - (x, \xi), \tag{15}$$

where $(y,\xi)=\sum_{ab}y_aB_{ab}\xi_b$ and x is the critical point where the minimum is achieved. It is the unique solution to the equation:

$$\frac{\partial}{\partial x_a} f(\tau, x) = \sum_b B_{ab} \xi_b. \tag{16}$$

The matrix $oldsymbol{K}$ is defined as

$$K_{ac} = \sum_{b,d} B_{ad}(D^{-1})_{db} B_{bc} \tag{17}$$

$$D_{ab} = \frac{\partial^2}{\partial y_a \partial y_b} f(\tau, y)|_{y=x} \tag{18}$$

where x is as above.

Asymptotic of probability measure

When $g=e^t,\ t\in\subset\mathfrak{h}_\mathbb{R}\subset\mathfrak{g}_\mathbb{R}$ the characters $\chi_{
u_k}(e^t)$ and $\chi_\lambda(e^t)$ are positive and as a consequence of the tensor product decomposition we have the identity

$$\prod_{k} \chi_{\nu_k}(e^t)^{N_k} = \sum_{\lambda} m_{\lambda}(\{V_k\}, \{N_k\}) \chi_{\lambda}(e^t)$$
(19)

Therefore

$$p_{\lambda} = \frac{m_{\lambda}(\{V_k\}, \{N_k\})\chi_{\lambda}(e^t)}{\prod_{k} \chi_{\nu_k}(e^t)^{N_k}}.$$
 (20)

is a natural probability measure on irreducible components of tensor product: $p_{\lambda} \geq 0$ and $\sum_{\lambda} p_{\lambda} = 1$. The extreme non regular case is when t=0. In this case the probability distribution is given by

$$p_{\lambda} = \frac{m_{\lambda}(\{V_k\}, \{N_k\})dim(V_{\lambda})}{\prod_{k} dim(V_{kk})^{N_k}}.$$
(21)

By the analogy with the left regular representation of a compact group we will call it Plancherel measure.

Theorem

1. If $\xi = \epsilon \lambda$ remain regular as $\epsilon \to 0$ and t is regular, the asymptotic of the the probability p_{λ} as $\epsilon
ightarrow 0$ is:

$$p_{\lambda} = \epsilon^{rac{r}{2}} rac{\sqrt{detK}}{(2\pi)^{rac{r}{2}}} rac{\Delta(x)}{\Delta(t)} e^{-(
ho, x-t)} e^{rac{1}{\epsilon}\widetilde{S}(au, \xi)} (1 + \mathcal{O}(\epsilon))$$
 (22)

where $ilde{S}(au,\xi)=S(au,\xi)-f(au,t)+(t,\xi)$. The exponent has maximum at η which the Legendre image of t and $\widetilde{S}(au,\eta)=0$.

2. If t is regular, the asymptotic probability distribution is localized at point η with a Gaussian distribution around this point. If we rescale random variable ξ near the critical point η as $\xi=\eta+\sqrt{\epsilon}a$, then in the limit $\epsilon o 0$ the random variable $a \in \mathbb{R}^r$ is distributed as

$$p(a) = \frac{\sqrt{\det K}}{(2\pi)^{\frac{r}{2}}} e^{-\frac{1}{2}\sum_{bc} a_b K_{bc} a_c}$$
 (23)

Theorem

As $\epsilon \to 0$ the Plancherel measure (21) weakly converges to

$$p(a) = rac{\sqrt{det(B)}}{(2\pi)^{rac{r}{2}}} \prod_{lpha>0} rac{(a,lpha)^2}{(
ho,lpha)} e^{-rac{1}{2}\sum_{b,c}a_bB_{bc}a_c}da$$

Example

Figure 4: Probability density function for B_2

References

- and S. Kerov, Asymptotics of Plancherel measure of symmetrical group and limit form of young tables, Doklady Akademii Nauk SSSR, 233, 6, pp 1024-1027, 1977
- nptotic of the largest and the typical dimensions of irreducible representations of a symmetric group, Functional analysis and its applications, 19, 1, pp. 21–31, 1985
- - A. Nazarov, Postnova, The limit shape of a probability measure on a tensor product of modules on the B_n algebra, Zapiski Nauchnykh Seminarov POMI, 468, 82–97, 2018