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, Asymptotic representation theory of SN
The study of statistics in ”large” natural representations goes back to works of Vershik-Kerov [1],[2] and
Logan-Shepp[3]. They studied statistics of irreducible components for Plancherel measure for the symmetric
group SN as N →∞.
Representations of symmetric group are parametrized by Young diagrams λ = (λ1, λ2, . . . λn).
The dimension of irreducible representation of symmetric group is given by hook-length formula:

dim τλ =
N !∏
h(i,j)

, (1)

where the product is taken over cells (i, j) of λ. The Plancherel measure:

P (N)(λ) =
(dim τλ)

2

N !
. (2)

To each λ it is possible to associate a broken line function λ(u) by switching from coordinates (i, j) to
coordinates (u, v):

u =
j − i
√
N

v =
j + i
√
N
. (3)

Then the border of the diagram λ can be represented as the broken line function λ(u).

Figure 1: Young diagram

Vershik and Kerov [1],[2] have shown that as N →∞ the broken line λ(u) converges in probability to the
limit continuous function Ω(u):

Ω(u) =
2

π

(
x arcsin

u

2
+
√

4− u2

)
, |u| ≤ 2, Ω(u) = |u|, |u| ≥ 2 (4)

Figure 2: Large Young diagram

Probability measure on the tensor products of modules for Lie algebra An

Consider the space of tensors VN,n = ⊗Nk=1C
n. In this space the symmetric group SN acts by permutation

of components and the Lie group GL(n) acts on each component. Due to Schur-Weyl duality

VN,n =
⊕

λ∈YN,n

V SN
λ ⊗ V GL(n)

λ , (5)

where YN,n is the space of Young diagrams with N boxes and no more than n rows. On this space the
Plancherel-type measure can be introduced:

µ(N)(λ) =
dimπλ dim τλ

nN
, (6)

where dim τλ is the dimension of the irreducible representation of SN , and dimπλ is the dimension of the
irreducible representation of GL(n). Asymptotic of this measure was studied in [4],[5].

I Biane [5] studied asymptotic at N,n→∞ with
√
N
n

= c - fixed constant. He found that the shape
of Young diagrams converge in probability to the continuous limit curve Ω(c, u) which depends on the
value of c.

Figure 3: Limit shapes of Young diagrams for different values of c

I Kerov [4] studied asymptotic at N →∞ with n - fixed. He found that the measures µ(N)(λ)
converge weakly to the continuous measure

φn(x) =
n
n(n−1)

2

1!2! . . . (n− 1)!

(
n

2π

)(n−1)
2 ∏

i≤j

(xi − xj)2e−
n
2

∑
k x

2
k, (7)

where xk =
λk−Nn√
N
, k = 1, 2, . . . n are the specific values of row length of diagram λ. The vector

x = (x1, . . .n) lies in the hyper plane Hn = {x|
∑n
k=1 xk = 0}

Probability measure on the tensor products of modules for Lie algebra Bn

I Nazarov, Postnova[6] studied the asymptotic N →∞ with n-fixed for the Plancherel-type
measure for modules of Lie algebra Bn.
The decomposition of tensor powers of the spinor fundamental module Vωn of Lie algebra Bn:

V ⊗Nωn
∼=
⊕
λ

Wλ(N)⊗ Lλ, (8)

here Lλ is the irreducible representation with the highest weight λ and
Wλ(N) ' Homg(L

λ, V ⊗Nωn
).

The dimension Mλ(N) = dimWλ(N) is the multiplicity of Lλ in the tensor product decomposition.

The Plancherel-type probability measure µ
(N)
λ on the space of the dominant integral weights λ:

µ
(N)
λ =

Mλ(N)dimLλ

dimV N
ωn

. (9)

In the limit N →∞ with fixed n these measures converge weakly to the continuous measure with the
probability density function:

φ ({xi}) =
∏
i<j

(x2
i − x

2
j)

2
n∏
l=1

x2
l exp

(
−

1

2

∑
k

x2
k

)
·

22nn!

(2n)!(2n− 2)! . . . 2!
, (10)

where xi = 1√
N
ai and ai = λi + ρi are the shifted Euclidean coordinates on weight space of Bn,

where ρ is the Weyl vector.

Large tensor products of representations of simple Lie algebras

Let g be a simple Lie algebra, Vi, i = 1 . . .m be its finite dimensional representations and Nk ≥ 0 be
integers. Any finite dimensional representation of a simple Lie algebra is completely reducible and therefore:

m⊗
k=1

V ⊗Nkk
∼=
⊕
λ

Wλ({Vk}, {Nk})⊗ Vλ. (11)

The sum is taken over irreducible components of the tensor product, Vλ is the irreducible g-module with the
highest weight λ and Wλ({Vk}, {Nk}) is the ”space of multiplicities”:

Wλ({Vk}, {Nk}) ' Homg(
m⊗
k=1

V ⊗Nkk , Vλ). (12)

Its dimension mλ({Vk}, {Nk}) is the multiplicity of Vλ in the tensor product. We assume Vk = Vνk,

otherwise Vk '
⊕
V
⊕mν,k
ν .

Choose a Borel subalgebra ∈ g and let ∆+ be corresponding positive roots, h be the corresponding Cartan
subalgebra and α1, . . . , αr be enumerated fundamental roots. Here r = rank(g) = dim(h) is the
rank of the Lie algebra g. Let gR be the split real form of g and h be its Cartan subalgebra.

We study the asymptotic behavior of multiplicitiesmλ in the limit whenNk →∞ and λ→∞
such that Nk = τk/ε and λ = ξ/ε, ε→ 0, where τk ∈≥0 and ξ ∈ h∗≥0.

Asymptotic of the multiplicity function

Theorem

If ξ = ελ remain regular as ε→ 0 the asymptotic of the multiplicity has the following form

mλ({Vk}, {Nk}) = ε
r
2

√
detK

(2π)
r
2

∆(x)e−(ρ,x)e
1
ε
S(τ,ξ)(1 +O(ε)) (13)

Here x ∈ h is the Legendre image of ξ ∈ h∗, ∆(x) is the denominator in the Weyl formula for
characters:

∆(x) =
∏
α∈∆+

(e
(x,α)

2 − e−
(x,α)

2 )

The function S(τ, ξ) is the Legendre transform of the function

f(τ, x) =
∑
k

τk ln(χνk(e
x)). (14)

S(τ, ξ) = min
y

(f(τ, y)− (y, ξ)) = f(τ, x)− (x, ξ), (15)

where (y, ξ) =
∑
ab yaBabξb and x is the critical point where the minimum is achieved. It is the unique

solution to the equation:
∂

∂xa
f(τ, x) =

∑
b

Babξb. (16)

The matrix K is defined as
Kac =

∑
b,d

Bad(D
−1)dbBbc (17)

Dab =
∂2

∂ya∂yb
f(τ, y)|y=x (18)

where x is as above.

Asymptotic of probability measure

When g = et, t ∈⊂ hR ⊂ gR the characters χνk(e
t) and χλ(e

t) are positive and as a consequence of
the tensor product decomposition we have the identity∏

k

χνk(e
t)Nk =

∑
λ

mλ({Vk}, {Nk})χλ(et) (19)

Therefore

pλ =
mλ({Vk}, {Nk})χλ(et)∏

k χνk(e
t)Nk

. (20)

is a natural probability measure on irreducible components of tensor product: pλ ≥ 0 and
∑
λ pλ = 1.

The extreme non regular case is when t = 0. In this case the probability distribution is given by

pλ =
mλ({Vk}, {Nk})dim(Vλ)∏

k dim(Vνk)
Nk

. (21)

By the analogy with the left regular representation of a compact group we will call it Plancherel measure.

Theorem

1. If ξ = ελ remain regular as ε → 0 and t is regular, the asymptotic of the the probability pλ as
ε→ 0 is:

pλ = ε
r
2

√
detK

(2π)
r
2

∆(x)

∆(t)
e−(ρ,x−t)e

1
ε
S̃(τ,ξ)(1 +O(ε)) (22)

where S̃(τ, ξ) = S(τ, ξ)− f(τ, t) + (t, ξ). The exponent has maximum at η which the Legendre

image of t and S̃(τ, η) = 0.
2. If t is regular, the asymptotic probability distribution is localized at point η with a Gaussian distribution
around this point. If we rescale random variable ξ near the critical point η as ξ = η +

√
εa, then in

the limit ε→ 0 the random variable a ∈ Rr is distributed as

p(a) =

√
detK

(2π)
r
2

e−
1
2

∑
bc abKbcac (23)

Theorem

As ε→ 0 the Plancherel measure (21) weakly converges to

p(a) =

√
det(B)

(2π)
r
2

∏
α>0

(a, α)2

(ρ, α)
e−

1
2

∑
b,c abBbcacda
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Figure 4: Probability density function for B2
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