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Shadow transform

Consider an object φ(x) which transforms under Euclidean
conformal transformation as a scalar primary of dimension ∆ and
consider the following expression

S∆[φ](x) =

∫
ddy

1

|x− y|2∆̃
φ(y), ∆̃ = d−∆.

It is convenient to rewrite it using the following notation

S∆[φ](x) =

∫
ddy 〈φ̃(x)φ̃(y)〉φ(y).

Since the dimensions at point y add to 0, the integral is
conformally-invariant.
The result transforms as a scalar operator of dimension ∆̃.
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Shadow transform
This “shadow transform” can be readily generalized to arbitrary
spin

S∆[O]a(x) =

∫
ddy 〈Õa(x)Õ†b(y)〉Ob(y)

It is convenient to describe general operators by so(d+ 2) weight
(∆, J, λ). Traceless-symmetric operators have λ = 0.

The shadow transform applies the following map to the quantum
numbers (∆, J, λ),

(∆, J, λ) 7→ (d−∆, J, λR)

Conformal invariance of the transform implies that this should
preserve the Casimir eigenvalues, e.g. (λ = 0)

C2 = ∆(∆− d) + J(J + d− 2),

C4 = J(J + d− 2)(∆− 1)(∆− d− 1).
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Affine Weyl reflections
All other weights with the same Casimir eigenvalues are obtained
from (∆, J, λ) by affine action of Weyl group of so(d+ 2).

For example, there are also reflections

(∆, J, λ) 7→ (∆, 2− d− J, λR),

(∆, J, λ) 7→ (1− J, 1−∆, λ),

...

including those which also mix in λ with J and ∆.

However, we would like the weights to makes sense for
SO(d+ 1, 1), which means that we want (J, λ) to be dominant for
SO(d), i.e. J ∈ Z≥0 etc. For generic ∆ only shadow transform
preserves this condition.

(Sometimes when ∆ is (half-)integer these reflections are fine.
This situation was discussed in Vladimir’s talk.)
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Restricted Weyl group

The “good” Weyl reflections form the restricted Weyl group. We
have just seen that the restricted Weyl group of SO(d+ 1, 1) is
W ′ = Z2 generated by the shadow transform.

The requirement J ∈ Z≥0 comes from compactness of SO(d). In
Lorentzian signature SO(d− 1, 1) is non-compact and we can make
sense of J ∈ C, just like ∆ ∈ C makes sense for SO(d+ 1, 1).

This adds new reflections to the restricted Weyl group, and makes
it W ′ = D8. Knapp&Stein then give us 6 new integral transforms.
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Continuous-spin operators

Given a traceless-symmetric operator Oµ1...µJ (x) we can encode it
by a function

O(x, z) ≡ zµ1 · · · zµJO
µ1...µJ (x).

It suffices to take z to be null and future-pointing.

For example, in d = 4 setting (z± = z0 ± z1)

z+ = 1, z− = zz, z2 =
z + z

2
, z3 =

z− z

2i

one essentially recovers the parametrization in Vladimir’s talk.
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Continuous-spin operators

By construction O(x, z) is

I a function on the forward null cone z2 = 0

I homogeneous in z with degree J

I is a restriction to null cone of a polynomial in z (equivalently,
it satisfies a particular differential equation)

From any such function a traceless-symmetric tensor can be
recovered using Todorov operator.

We generalize to J ∈ C by dropping the last requirement.
Continuous-spin operator O(x, z) is

I a function on the forward null cone z2 = 0

I homogeneous in z with degree J ∈ C
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Knapp-Stein operators in Lorentzian signature

Consider the following integral transform (“light transform”)

L[O](x, z) ≡
∫ +∞

−∞
dα(−α)−∆−JO(x− z/α, z)

Dimensional analysis in x and z tells us that L[O] sends

(∆, J) 7→ (1− J, 1−∆).

It is a bit more non-trivial that L is conformally-invariant.

Moreover, L converges for ∆ + J > 1. Therefore, L immediately
produces lots of continuous-spin operators in a unitary CFT.
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A familiar example

In fact we are very much familiar with one example, L[T ]

L[T ](−∞z, z) =

∫ +∞

−∞
dαT (αz, z) =

∫ +∞

−∞
dx−T−−(x).

Conformally-invariant statement of averaged null energy condition
is then

L[T ](x, z) ≥ 0.

For example, “conformal collider” setup of Hofman&Maldacena is
L[T ](∞, z).
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Other transforms

Define additionally

SJ [O](x, z) =

∫
Dd−2z′(−2z · z′)2−d−JO(x, z)

then all the transforms are

w order ∆′ J ′ λ′

1 1 ∆ J λ
S∆ = LSJL 2 d−∆ J λR

SJ 2 ∆ 2− d− J λR

S = (SJL)2 2 d−∆ 2− d− J λ
L 2 1− J 1−∆ λ
F = SJLSJ 2 J + d− 1 ∆− d+ 1 λ
R = SJL 4 1− J ∆− d+ 1 λR

R = LSJ 4 J + d− 1 1−∆ λR



Other transforms

Define additionally

SJ [O](x, z) =

∫
Dd−2z′(−2z · z′)2−d−JO(x, z)

then all the transforms are (for stress-tensor)

w order ∆′ J ′ λ′

1 1 d 2 0
S∆ = LSJL 2 0 2 0
SJ 2 d −d 0
S = (SJL)2 2 0 −d 0
L 2 −1 1− d 0
F = SJLSJ 2 d+ 1 1 0
R = SJL 4 −1 1 0

R = LSJ 4 d+ 1 1− d 0



R-transform of T

We find that w(x, z) ≡ R[T ](x, z) is a dimension −1 spin-1
operator. It is easy to check that

1. properties of R ensure w(x, z) = zµw
µ(x)

2. conservation of T (x, z) implies that wµ(x) satisfies conformal
Killing equation (CKE)

In fact one can prove the operator identity

R[T ](x, z) = wAB(x, z)LAB

where wAB is a basis of solutions to CKE and LAB are the
conformal generators.
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A bit more on light transform

Claim: If ∆ + J > 1 then L[O] kills the vacuum

L[O](x, z)|0〉 = 0.

Proof: Any Wightman function 〈0| · · ·L[O](x, z)|0〉 can be shown
to vanish by contour deformation + an OPE argument for
dropping the arc at infinity.

This can be explicitly checked in CFT three-pt functions,

〈0|O1O2L[O]|0〉 = 〈0|L[O]O1O2|0〉 = 0,

while

〈0|O1L[O]O2|0〉 6= 0

and in general is some interesting expression.
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Analyticity in spin

Four-point functions have conformal partial wave expansions

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =

∞∑
J=0

∫ d
2

+i∞

d
2
−i∞

d∆

2πi
c(∆, J)Ψ∆,J(x1, x2, x3, x4),

where

Ψ∆,J(xi) ∼ G∆,J(xi) +Gd−∆,J(xi).

This is related to the usual conformal block expansion by a contour
deformation,

c(∆, J) ∼
f2
φφOi,J

∆−∆i(J)
.

I Singularities of c(∆, J) for J ∈ Z≥0 are related to local
primary operators of spin J .
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Analyticity in spin

Caron-Huot ’17 derives a formula for c(∆, J)

c(∆, J) ∝∫
ddx1 . . . d

dx4〈0|[φ(x4), φ(x1)][φ(x2), φ(x3)]|0〉G̃J+d−1,∆−d+1(xi)

This converges for ∆ ∈ d
2 + iR, J > 1 and agrees for J ∈ Z≥2 with

c(∆, J) in Euclidean CPW expansion.

I This formula defines c(∆, J) for J /∈ Z≥0.

I Singularities of c(∆, J) for J ∈ Z≥0 are related to local
primary operators of spin J .

I What is the meaning of these singularities for J /∈ Z≥0?
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Analyticity in spin
Can we have non-integer spin operators OJ(x, z) which reduce to
local operators OJ(x, z) = OJ(x, z) at J ∈ Z≥0?

No. We must necessarily have

OJ(x, z)|0〉 = 0

Two essentially equivalent arguments

1. We can compute conformal Casimirs of this state. Generically
they will not be in the spectrum of Casimirs on the physical
Hilbert space, or even in the spectrum of positive-energy
irreps.

2. We can check two- and three-point functions. The three-pt
functions

〈0|O1O2OJ |0〉 and 〈0|OJO1O2|0〉

fail Wightman analyticity properties, but

〈0|O1OJO2|0〉

is fine.
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Analyticity in spin

Since OJ(x, z)|0〉 = 0 for generic J , it must be for all J if we want
analyticity in J .

This implies that OJ(x, z) must be non-local or 0 for all J .

Proposal: there exist analytic families of non-local primary
operators Oi,J(x), such that

Oi,J(x) = L[Oi,J ](x, z) for J ∈ Z≥0.

(Note that J is not the spin of Oi,J anymore.)
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(Generalized) free theories
In free theory we have a family of operators

OJ(u, v) =:φ(u, v)∂Juφ(u, v) : +∂u(· · · )

L[OJ ](−∞, 0) =

∫ +∞

−∞
du :φ(u, 0)∂Juφ(u, 0) :

Define the primary

OJ(−∞, 0) ∝
∫
duds

1

(s+ iε)1+J
:φ(u+ s, 0)φ(u− s, 0) :

Using that for J ∈ 2Z≥0

1

(s+ iε)1+J
+

1

(−s+ iε)1+J
∝ ∂Jδ(s)

We find that indeed

OJ = L[OJ ] for J ∈ 2Z≥0.
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OJ = L[OJ ] for J ∈ 2Z≥0.



General CFTs

In a general CFT we define an object O∆,J by

O∆,J(x, z) =

∫
ddx1d

dx2K(x1, x2;x, z)φ(x1)φ(x2)

and the families Oi,J are obtained by

O∆,J ∼
Oi,J

∆−∆i(J)
.

By construction, matrix elements of Oi,J agree with matrix
elements of L[Oi,J ] at integer spin.



General CFTs

Computing matrix elements

〈φ(x4)O∆,J(x, z)φ(x3)〉 =∫
ddx1d

dx2K(x1, x2;x, z)〈φ(x4)φ(x1)φ(x2)φ(x3)〉

we find

〈φ(x4)O∆,J(x, z)φ(x3)〉 = c(∆, J)〈φ(x4)O∆,J(x, z)φ(x3)〉(0)

with c(∆, J) given by Lorentzian inversion formula.

c(∆, J) =

1

2πi

∫
ddxi〈0|[φ(x4), φ(x1)][φ(x2), φ(x3)]|0〉

[
〈φφL[O]〉−1〈φφL[O]〉−1

〈L[O]L[O]〉−1

]
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An application: OPE of energy detectors
Consider the following expectation value

f(n1, n2) = 〈0|O†(−p)L[T ](∞, z1)L[T ](∞, z2)O(p)|0〉

For zi = (1, ni) this measures two-point function of energy flux in
directions ni ∈ Sd−2 in state O(p)|0〉.

We would like to understand the expansion of this correlator as
n1 → n2. Use CPW expansion on Sd−2

f(n1, n2) =

∫
dδ

2πi
c̃(δ)gδ(n1, n2),

c̃(δ) =

∫
dd−2n1d

d−2n2f(n1, n2)g∗δ (n1, n2)

Comparing this inversion integral with generalized Lorentzian
inversion formula we find

c̃(δ) = c(∆ = δ + 1, J = 3)
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An application: OPE of energy detectors

Using c̃(δ) = c(∆ = δ + 1, J = 3) and

f(n1, n2) =

∫
dδ

2πi
c̃(δ)gδ(n1, n2)

we can deform the contour and write OPE expansion for f(n1, n2),
which is equivalent to

L[T ](∞, z1)L[T ](∞, z2) =
∑
i

B(z1, z2, ∂z2)Oi,3(∞, z2).



Summary

I Tools of harmonic analysis on Lorentzian conformal group are
essential for understanding Lorentzian inversion formulas and
analyticity in spin

I Using these tools we have found a plausible story for
spin-analytic families of non-local light-ray operators

I These operators control things such as Regge limit and OPE
of average null energy operators

I What is the general analytic structure of c(∆, J) for J /∈ Z≥0?

I Is our construction rigorously well-defined in a general
non-perturbative CFT?

I Can we put this theory to a test in a non-perturbative CFT
like 3d Ising?
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Fin

Thank you!


