Virasoro symmetry and Coulomb gas integrals in higher dimensions

V.B. Petkova
Institute of Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences
Paolo Furlan, VP : arxiv:1806.03270,
(and Mod.Phys.Lett. A (1989), hep-th/0409213 (2004)

Outline

- Briefly on earlier work on Virasoro symmetry in higher dimensional CFT
- Liouville theory in $d=2 h$ space time dimensions
- 3-point function of vertex operators - Coulomb gas integrals
- 3-point function - extension to three arbitrary charges for different regions of parameters (analogs of real $c>25$ and $c<1$ regions)
- Open questions

Observation:

The free field realization of the $c<1$ minimal models in 2d CFT Coulomb gas with a background charge - admits a generalization to arbitrary dimension $d=2 h$ of space time: based on a subcanonical logarithmic field

$$
\frac{2}{(4 \pi)^{h} \Gamma(h)}(-\square)^{h}<\phi(x) \phi(0)>=\delta^{2 h}(x)
$$

Integrals interpreted as correlators of vertex operators $\quad V_{\alpha}(x)=e^{2 \alpha i \phi(x)}$

Fusion rules analogous to the 2d case, e.g.,

$$
V_{\alpha} V_{\alpha_{f}} \rightarrow V_{\alpha+\alpha_{f}}+V_{\alpha-\alpha_{f}} \quad \triangle\left(\alpha_{f}\right)=2 h \triangle_{2,1}
$$

Further confirmed in the example of 2 integral 4-point function - two screening charges of different or the same type, analyzed in Mellin representation. "2h minimal model", singularities. Non-unitary theory.

Applied to 3-point functions, the оператор related to the level 2 singular vector

$$
<\alpha\left|V_{\alpha_{1}}(x)\left(t \mathbf{L}_{-1}^{2}(x)-\mathbf{L}_{-2}(x)\right)\right| \triangle\left(\alpha_{2,1}\right)>=0
$$

reproduces the two term fundamental fusion rule; for the 4-point

$$
<\alpha\left|V_{\alpha_{2}}\left(x_{2}\right) V_{\alpha_{1}}\left(x_{1}\right)\left(t \mathbf{L}_{-1}^{2}(x)-\mathbf{L}_{-2}(x)\right)\right| \triangle\left(\alpha_{2,1}\right)>=0
$$

with $x=x_{1}$, or $\mathrm{x}=x_{2}$ - leads to the system of two Appell - Kampe de Feriet diff eqs for the double series hypergeometric function of type $\quad \mathbf{F}_{4}\left(\alpha, \beta, \gamma, \gamma^{\prime} ; x, y\right)$ (in 2d reduces to two hypergeometric eqs.)
paper rejected: "the model has no obvious physical motivation/application, e.g. for a N=4 supersymmetric theory..."

The model was recently reconsidered in the noncompact region (c>25) in a broader context [Levy, Oz, 2018] "Liouville CFT in higher dimensions", motivated by applications to the Theory of fluid turbulence

The Liouville action and its dual in $\boldsymbol{d}=\mathbf{2 h}$ space time dimension

$$
\begin{aligned}
& \qquad S^{w}=\frac{1}{\left.(4 \pi)^{h} \Gamma h\right)} \int d^{2 h} x \sqrt{g}\left(\phi(-\square)^{h} \phi+2 Q_{h}(w) \phi \mathscr{G}\right)+\mu_{w} \int d^{2 h} x \sqrt{g} e^{2 w \phi} \\
& \qquad w=b, \mu_{b}=\mu, o r, w=\frac{h}{b}, \mu_{h / b}=\tilde{\mu} \\
& \text { On the 2h sphere } S^{2 h} \quad Q_{h}(b)=b+\frac{h}{b}=\sqrt{h}\left(\bar{b}+\frac{1}{\bar{b}}\right)=\sqrt{h} Q(\bar{b})
\end{aligned}
$$

$$
\frac{1}{(4 \pi)^{h} \Gamma(h)} \int d^{2 h} \sqrt{g} \mathscr{G}(x)=1
$$

reference metric locally flat with the only singularity of the curvature related factor $\mathscr{G}(x)$ localized at a point at infinity; equivalent to the insertion of vertex operator $V_{-Q_{h}}=e^{-2 Q_{h} \phi}$

$$
\int d^{2} x V_{b}(x), \int d^{2} x V_{\frac{h}{b}}(x) \begin{gathered}
\text { vertex } \\
\text { operators } \\
\text { of } \operatorname{dim} 2 \mathrm{~h}
\end{gathered}
$$

$$
V_{\beta}=e^{2 \beta \phi}, 2 \triangle_{h}(\beta)=2 \beta\left(Q_{h}-\beta\right)=2 h \triangle(\bar{\beta})=2 h \bar{\beta}(Q(\bar{b})-\bar{\beta})
$$

Problem: Compute the 3 -point function

$$
\left.C\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=<\alpha_{3}\left|V_{\alpha_{2}}(e)\right| \alpha_{1}\right\rangle
$$

[Levy-Oz]: correlator in the light charge semiclassical limit :

$$
b \rightarrow 0, \quad \alpha_{a}=b \sigma_{a}, \quad \sigma_{a}=\text { finite }
$$

[2d: ZZ (Zamolodchikov2), 1996]

Coulomb gas computation - charges restricted - charge conservation condition

$$
\sum_{a} \alpha_{a}+s b=Q_{h}(b)=\frac{h}{b}+b, \quad \text { s screening charges } \int d^{2} x V_{b}(x)
$$

$\Rightarrow \quad$ a class of conformally invariant integrals in $\mathbf{d}=\mathbf{2 h}$ generalization of the Dotsenko-Fateev 2d volume integral formula

$$
\begin{array}{r}
I_{s}\left(p_{1}, p_{2}, p_{3}\right)(x)=\int d \mu_{s}(t) D_{s}^{-2 b^{2}}(t) \prod_{i=1}^{s}\left|t_{i}\right|^{2 p_{1}}\left|t_{i}-x\right|^{2 p_{2}}, \quad p_{a}=-2 \alpha_{a} b \\
d \mu_{s}(t)=\frac{1}{\pi^{h s} s!} \prod_{i=1}^{s} d^{2 h}\left(t_{i}\right), \quad D_{s}(t)=\prod_{1 \leq i<j \leq s}\left|t_{i}-t_{j}\right|^{2}
\end{array}
$$

Derivation based on a formula generalising the BF formula
2h=2: [Baseilhac, Fateev, 1998][Fateev, Litvinov, 2007].

$$
\begin{align*}
\int d \mu_{n}(y) D_{n}^{h}(y) \prod_{i=1}^{n} \prod_{j=1}^{n+m+1}\left|y_{i}-t_{j}\right|^{2 p_{j}}= & \prod_{j=1}^{n+m+2} \frac{1}{\gamma_{h}\left(-p_{j}\right)} \frac{1}{\gamma_{h}\left(h(n+1)+\sum_{j} p_{j}\right)} \times \tag{*}\\
\Gamma(h-\delta) & \prod_{i<j}^{n+m+1}\left|t_{i j}\right|^{2 h+2 p_{i}+2 p_{j}} \int d \mu_{m}(u) D_{m}^{h}(u) \prod_{i=1}^{m} \prod_{j=1}^{n+m+1}\left|u_{i}-t_{j}\right|^{-2 h-2 p_{j}}
\end{align*}
$$

$$
\gamma_{h}(\delta):=\frac{\Gamma(h-\delta)}{\Gamma(\delta)}
$$

Two equivalent free field realizations of the N-point correlator of vertex operators related by

$$
V_{\alpha_{j}}\left(t_{j}\right)=r\left(\alpha_{j}\right) V_{Q_{h}-\alpha_{j}}\left(t_{j}\right)
$$

with integer number of screening charges \boldsymbol{m} and \boldsymbol{n} - only possible for $N=m+n+2$ and fixed value of the parameter $w \rightarrow 2 w^{2}=-h$, i.e. $b^{2}=-\frac{h}{2}$, or, $b^{2}=-2 h$

In this case the reflection factor is computed from $N=3, \quad m=0, n=1$

Take $\mathrm{m}=0, \mathrm{n}=\mathrm{s}-1$, all $p_{i}=-h-b^{2}$, getting $D_{s}^{-h-2 b^{2}}(t) \quad$ from the factor in the r.h.s., represented by the integral in the I.h.s

Allows to derive and solve a recursion relation for the 3-point Coulomb gas integrals

$$
\begin{aligned}
& I_{s}\left(p_{1}, p_{2}, p_{3}\right)(x)=\operatorname{const}\left(x^{2}\right)^{h+p_{1}+p_{2}} I_{s-1}\left(p_{1}-b, p_{2}-b, p_{3}\right)(x) \\
& \mathbf{C}_{s}\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\frac{1}{\gamma_{h}^{s}\left(-b^{2}\right)} \prod_{k=0}^{s-1} \frac{\gamma_{h}\left((k-s) b^{2}\right)}{\prod_{a=1}^{3} \gamma_{h}\left(2 \beta_{a} b+k b^{2}\right)}, \quad \sum_{a} \beta_{a}-Q_{h}=-s b
\end{aligned}
$$

Similarly for the dual correlator

$$
\tilde{\mathbf{C}}_{s}\left(\beta_{1}, \beta_{2}, \beta_{3}\right), \text { with } \sum \beta_{a}+s \frac{h}{b}=Q_{h} ; b \rightarrow \frac{h}{b}
$$

Next step - analytic continuation, getting rid of the restriction on the 3 charges, generalization of the 2d DOZZ formula for the Liouville 3-point constant

Barnes double Gamma function $\quad \Gamma_{b}(x)=\Gamma_{\frac{1}{b}}(x) \quad$ poles at $x=-n b-m / b, n, m \in \mathbb{Z}_{\geq 0} ;$

$$
\frac{\Gamma_{b}\left(x+b^{\epsilon}\right)}{\Gamma_{b}(x)}=\sqrt{2 \pi} \frac{b^{\epsilon\left(b^{\epsilon} x-\frac{1}{2}\right)}}{\Gamma\left(b^{\epsilon} x\right)}, \quad \epsilon= \pm 1
$$

$$
\Upsilon_{b}^{(h)}(x):=\frac{1}{\Gamma_{b}(x) \Gamma_{b}\left(Q_{h}-x\right)}=\Upsilon_{b}^{(h)}\left(Q_{h}-x\right)
$$

$$
\Rightarrow \text { functional relations } \begin{aligned}
& \frac{\Upsilon_{b}^{(h)}(x+b)}{\Upsilon_{b}^{(h)}(x)}=b^{h-2 b x} \gamma_{h}(x b) \\
& \frac{\Upsilon_{\frac{h}{b}}^{(h)}\left(x+\frac{h}{b}\right)}{\Upsilon_{\frac{h}{b}}^{(h)}(x)}=\left(\frac{h}{b}\right)^{h-2 \frac{h}{b} x} \gamma_{h}\left(x \frac{h}{b}\right)
\end{aligned}
$$

$\frac{\Upsilon_{b}^{(h)}\left(x+\frac{h}{b}\right)}{\Upsilon_{b}^{(h)}(x)}$ is computed applying h times the

For $h=1$ these two functions $\Upsilon_{b}^{(h)}(x), \Upsilon_{\frac{h}{b}}^{(h)}(x)$ coincide

We get

$$
\beta_{123}=\beta_{1}+\beta_{2}+\beta_{3}
$$

$$
C\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\frac{\Gamma(h)}{b^{h-1}}\left(\frac{-\pi^{h} \mu b^{2 h-2 b^{2}}}{b^{4 h} \gamma_{h}\left(-b^{2}\right)}\right)^{\frac{Q_{h}-\beta_{123}}{b}} \prod_{k=1}^{3} \frac{\Upsilon_{b}^{(h)}\left(2 \beta_{k}\right)}{\Upsilon_{b}^{(h)}\left(\beta_{123}-2 \beta_{k}\right)} \frac{\Upsilon_{b}^{(h)}(b)}{\Upsilon_{b}^{(h)}\left(\beta_{123}-Q_{h}\right)}
$$

$$
\text { s.t. } \operatorname{Res}_{\beta_{123}-Q_{h}=-s b} C\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\left(-\pi^{h} \mu\right)^{s} C_{s}\left(\beta_{1}, \beta_{2}, \beta_{3}\right)
$$

while starting from the dual 3-point Coulomb gas correlator

$$
\begin{gathered}
\tilde{C}\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\frac{\Gamma(h)}{\left(\frac{h}{b}\right)^{h-1}}\left(\frac{-\pi^{h} \tilde{\mu}\left(\frac{h}{b}\right)^{2 h-2\left(\frac{h}{b}\right)^{2}}}{\left(\frac{h}{b}\right)^{4 h} \gamma_{h}\left(-\left(\frac{h}{b}\right)^{2}\right)}\right)^{\frac{b\left(Q_{h}-\beta_{123}\right)}{h}} \prod_{k=1}^{3} \frac{\Upsilon_{\frac{h}{b}}^{(h)}\left(2 \beta_{k}\right)}{\Upsilon_{\frac{h}{b}}^{(h)}\left(\beta_{123}-2 \beta_{k}\right)} \Upsilon_{\frac{h}{b}}^{(h)} \frac{\Upsilon_{\frac{h}{b}}^{(h)}\left(\frac{h}{b}\right)}{\left(\beta_{123}-Q_{h}\right)} \\
\operatorname{Res}_{\beta_{123}-Q_{h}=-s \frac{h}{b}} \tilde{C}\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\left(-\pi^{h} \tilde{\mu}\right)^{s} \tilde{C}_{s}\left(\beta_{1}, \beta_{2}, \beta_{3}\right)
\end{gathered}
$$

Starting from the two Coulomb gas 3-point expressions we get different unrelated analytic continuations expressed by the two different functions $\quad \Upsilon_{b}^{(h)}, \Upsilon_{\frac{h}{b}}^{(h)}$

The two Liouville theories with interaction terms defined by the two dual screening charges produce different correlators for $h>1$, related by

$$
b, \mu \rightarrow \frac{h}{b}, \tilde{\mu}
$$

The theory is not self-dual for $\boldsymbol{h} \boldsymbol{> 1}$ - even if we impose some relation between the two coupling constants as in the $\mathrm{h}=1$.

This feature of the $\mathrm{h}>1$ theory is reflected also in the semiclassical light charge limit

$$
b \rightarrow 0, \beta_{a}=b \sigma_{a}, \sigma_{a}-\text { finite }
$$

The fixed area correlator

$$
\begin{aligned}
& C^{A}\left(b \sigma_{1}, b \sigma_{2}, b \sigma_{3}\right)=(\mu A)^{\frac{\sigma b-Q_{h}}{b}} \frac{C\left(b \sigma_{1}, b \sigma_{2}, b \sigma_{3}\right)}{\Gamma\left(\frac{\sigma b-Q_{h}}{b}\right)} \\
& \quad \rightarrow c_{h}(b)\left(\frac{A}{\pi^{h}}\right)^{\frac{\sigma b-Q_{h}}{b}} \prod_{k=1}^{3} \frac{\Gamma\left(\sigma-2 \sigma_{k}\right)}{\Gamma\left(2 \sigma_{k}\right)} \Gamma(\sigma-1), \quad \sigma=\sigma_{123}
\end{aligned}
$$

For $\mathrm{h}=1$ reproduces the semiclassical fixed area correlator in [ZZ]

The (properly normalised) dual correlator

$$
\tilde{C}\left(b \sigma_{1}, b \sigma_{2}, b \sigma_{3}\right) \quad \begin{aligned}
& \text { produces similar expression but the Gamma's } \\
& \text { depend on } \mathrm{h}:
\end{aligned}
$$

$$
\Gamma\left(\sigma-2 \sigma_{a}\right) \rightarrow \Gamma\left(h\left(\sigma-2 \sigma_{a}\right)\right), \text { etc. }
$$

Comparison with [Levy,Oz] - qualitatively - the second formula with h-dependent arguments, if some relation for the two coupling constants is postulated, generalising the case $h=1$, but the coefficient is rather the one in the first formula.

Compact ("matter") region c<1

The Coulomb gas representation for the correlator of the vertex operators

$$
\begin{aligned}
& V_{e}^{(M)}(x)=e^{2 e i \chi(x)} \quad \text { is given by changing } \\
& b^{2} \rightarrow-b^{2} \quad \text { while }-2 \beta_{a} b \rightarrow-2 e_{a} b, \quad 2 \triangle^{(M)}(e)=2 e\left(e-e_{0}^{(h)}\right), e_{0}^{(h)}=\frac{h}{b}-b
\end{aligned}
$$

The 3-point constant for three arbitrary charges is

$$
\begin{aligned}
& C^{(M)}\left(e_{1}, e_{2}, e_{3}\right)=\left(-\pi^{h} \mu_{M} \frac{b^{-2 b e_{0}^{(h)}}}{\gamma_{h}\left(b^{2}\right)}\right)^{\frac{e_{123}-e_{0}^{(h)}}{b}} \prod_{k=1}^{3} \frac{\Upsilon_{b}^{(h)}\left(e_{123}-2 e_{k}+b\right)}{\Upsilon_{b}^{(h)}\left(2 e_{k}+b\right)} \frac{\Upsilon_{b}^{(h)}\left(e_{123}-e_{0}^{(h)}+b\right)}{\Upsilon_{b}^{(h)}(b)} \\
& \text { s.t. } C^{(M)}\left(e_{1}, e_{2}, e_{3}\right)_{\mid e_{123}-e_{0}^{(h)}=s b}=C_{s}^{(M)}\left(e_{1}, e_{2}, e_{3}\right), C_{0}^{(M)}\left(e_{1}, e_{2}, e_{3}\right)=1
\end{aligned}
$$

i.e., reproduces the Coulomb gas expression; effectively one uses the special function as a shorthand notation and substitutes at the end the expression for the integer s ; similarly for $\mathrm{b}-\mathrm{>} \mathrm{~h} / \mathrm{b}$

$$
I_{n}=\int d \mu_{n}(y) D_{n}^{h}(y) \prod_{i=1}^{n} \prod_{j=1}^{n+1}\left|y_{i}-t_{j}\right|^{-2 \delta_{j}}=\prod_{j=1}^{n+2} \frac{1}{\gamma_{h}\left(\delta_{j}\right)} \prod_{i<j}^{n+1}\left|t_{i j}\right|^{2 h-2 \delta_{i}-2 \delta_{j}}
$$

Ex.: n=2 - in the I.h.s.: 2 integrals, 4-point function (with one of the coordinates taken to infinity)
factor $D_{2}^{h}(y)=\left(y_{12}^{2}\right)^{h}$ polynomial, expand $\left|\left(y_{1}-t_{1}\right)-\left(y_{2}-t_{1}\right)\right|^{2 h}$
and replace by derivatives with respect to $\mathbf{t}_{\mathbf{1}}$ distributed to the two integrals

$$
\begin{aligned}
\Rightarrow & I_{2}=\sum D I_{1}\left(\delta_{1}-h\right) D I_{1}\left(\delta_{1}-h\right) \\
& I_{1}\left(\delta_{1}-h\right)=I_{1}\left(\delta_{1}-h, \delta_{2}, \delta_{3}, \delta_{4}\right)(u, v), \sum_{a} \delta_{a}-h=2 h
\end{aligned}
$$

the simplest 1-integral conf. 4-point function

- The result so far is inconclusive - coeff in the r.h.s. reproduced in the leading order, but vanishing of the remaining terms still not obvious relevant expansion of the blocks?
- Another check - analyze the crossing relation with two arbitrary coefficients
- would lead to a functional equation for their ratio generalising the 2d case

Conclusions:

- The Liouville theory in higher dimensions shares many of the features of the 2 d case, however the selfduality property is lost.
- The particular Coulomb gas integrals provide new examples of computable conformally invariant integrals.
- The basic generalized BF formula still needs more checks.
- The possible applications of this non-unitary theory may justify further studies
recently - supersymmetric extension [Levy, Oz, Raviv-Moshe, 2018]

Край

