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We study the massless quantum field theories describing the critical points in
two dimensional statistical systems. These theories are invariant with respect to
the infinite dimensional group of conformal (analytic) transformations. It is
shown that the local fields forming the operator algebra can be classified
according to the irreducible representations of the Virasoro algebra. Exactly
solvable theories associated with degenerate representations are analized. In
these theories the anomalous dimensions are known exactly and the correlation
functions satisfy the system of linear differential equations.
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According to the scaling hypothesis, fluctuations of order parameters right
at the point of a second-order phase transition possess invariance under the
scaling transformations

£ AL (1)

where £7 are the coordinates; a=1,2,..., 4. In quantum field theory,
taken as a mathematical tool for the theory of second-order phase transi-
tions, the invariance is equivalent to the vanishing of the trace of the
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We present an mvestigation of the massless, two-dimensional, interacting field theones Their
basic property 1s their invanance under an infirute-dimensional group of conformal (analytic)
transformations It 1s shown that the local fields forming the operator algebra can be classified
according to the irreducible representations of Virasoro algebra, and that the correlation functions
are bwilt up of the “conformal blocks” which are completely determuned by the conformal
mvanance Exactly solvable conformal theones associated with the degenerate representations are
analyzed In these theories the anomalous dimensions are known exactly and the correlation
functions satisfy the systems of linear differential equations

1. Introduction

Conformal symmetry was introduced into quantum field theory about twelve
years ago due to the scaling 1deas in the second-order phase transition theory (see [1]
and references therein). According to the scaling hypothess, the interaction of the
fields of the order parameters 1n the cnitical point 15 mvanant with respect to the
scale transformations

£5-» A8, (L1

where §° are the coordinates, a=1,2,..., D. In the quantum field theory the scale
symmetry (1.1) takes place provided the stress-energy tensor 1s traceless



Thirty five years after... BPZ 1983 papers.
CFT didn't start with those papers ...

2D-Conformal Field Theories (CFT): Quantum Field Theo-
ries covariant under conformal transfos. In 2d: analytical changes
of the variable z = x1 4+ ixo, enforced by action of Virasoro alge-
bra (or some “extended chiral algebra” A D Vir)

C

[Ln, Lm] = (n — m)Ln—I—m + En(nQ —1)

(a quantum realization of ¢/, = —z”"‘l%), ¢ = “central charge”.



The old ingredients:

A. Polyakov's 1970 paper: Euclidean 4 scale invariance imply
local scale, i.e.,conformal invariance

= d-dimensional CFT : see the lectures by G. Mack and 1.
Todorov

Dual models: G. Veneziano 1968
Conformal invariance from reparametrization of the world sheet.
The Virasoro algebra: [M. Virasoro 1969 (4 J. H. Weis)],

(L Lin] = (0= m) Ly 4 157(n? — 1)
(unknowing of Gelfand—Fuchs’ 1968 paper on the central extensions of the
Witt algebra)



Many concepts to be rediscovered in the 80’s already found

then:
Vertex operators V(z) =: expiQ ¢(z) :, [S.Fubini—G. Veneziano 1969]

Superconformal algebra: [P. Ramond; A. Neveu—J. Schwarz, 1971],
Conformal covariant fields (“primary’): [J.-L.Gervais & B. Sakita, 1971]

2D-current algebras [Jom, Jon] = S Jemtn + EdapOm+n0, SUgawara construction
Ly,o<> " Jamdan—m 1, COSet construction. .. [K.Bardacki—M.Halpern, 1971]

Conformal Ward identities, OPE, etc, [S.Ferrara— A.Grillo—-R.Gatto—G.Parisi '74]

Modularity and Counting of states:
[L.Brink—H.B.Nielsen 1973, W. Nahm 1974-76; C. Thorn 1980]

Unitarity constraint on the central charge
¢c> 1 M. Lischer and G. Mack, 1976 ...unpublished !

See “The Birth of String Theory” [A. Cappelli, E. Castellani, F.
Colomo, P. Di Vecchia] for a historical survey.



What made BPZ’'s 1983 papers possible?

Renewed interest in string theory (Polyakov 1981 papers on Liou-
ville, [M. Green—J. Schwarz 1982-84]), and in anomalies [B.Zumino, R.
Stora,’s83], WZWN model, bosonization. . . [S. Novikov '82, A.Polyakov—
P.Wiegmann '83, E.Witten '83]

Renewed interest in critical 2D statistical models [B. Nienhuis 1983]

New ingredient: Mathematics:

representation theory of Vir: [V. Kac 1979, B. Feigin—D. Fuchs 1982]
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V. Kac, B. Feigin—D. Fuchs: highest weight representation of Vir:

M(C,h) — Span{\L(illL(iQ .. Lam |h>/

“level” —Z jo

: ; : _ 6 _ o (r(xz41)—sz)?*-1
is reducible iff e=1- 25, h=h =25 5— 2€C rseN

(roots of Kac’' determinant)

) = hlh) ; Lp>olh) = O}

Different patterns of reducibility and of the corresponding irreducible rep

Vieny = Mep/ -+ depending whether z ¢ Q or z = -2

Ensuing character formulae [A. Rocha-Caridi 1984; V. Dobrev 1985]

C
h—sz _ ...

Lo— L _ 4
xn(q) i=try, g2z ="z #nq"
(:h) nzo I -



BPZ:

basic formalism of CFT:

— complex coordinates z = x1 +ixz2 and z = x1 —ixo “decouple” . 2 copies of
Vir

— energy—momentum tensor T'(z),T(z) and its anomalous conformal transfor-

mations
— conformal Ward identities; Virasoro action on fields = differential operators

— “primary” (aka "ancestor”) fields ¢ and their covariant transformations:
- A" (z\P _

320 = (£) (£) 6.0

— primary field correlators determine those of their descendent fields LY L™, - - - ¢

— OPE and conformal bootstrap



BP.Z.

basic formalism of CFT:

complex coordinates z = z1 +iz2 and z = zi1iz> “decouple”

energy—momentum tensor T'(z),T(z) and its anomalous conformal transformations
conformal Ward identities; Virasoro action on fields = differential operators

“primary fields” ¢ and their covariant transformations ¢(z,z) = (Z—Z)h (g—?)ﬁqb(g‘,{)

primary field correlators determine those of their descendent fields LﬁllLiQQ N0

OPE and conformal bootstrap

New:

— 3 “Degenerate” (reducible) representations of Vir: quotienting out the “null
fields" leads to (partial) differential equations satisfied by the correlators

— For ¢ < 1, 3 “minimal models” M(p,p’) with a finite number of primaries:

c=1-%pr = leddse)oloste) ooy 1 1<s<p-1
_ :i:l _ . N2 __ _ )2
ar = +(p/p)* = {p—sp) —{p-p)

— OPA closes on this finite number of fields
— Ising correlators (cooo), (eecoo), etc satisfy hypergeometric differential equa-
tions
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Why is BPZ’'s 1983 paper regarded as a new start ?

In the aftermath of BPZ: explosion of activity (and # papers!)
in

— CFT and string theory o0
— 2D critical phenomena and appli-
cations to spin chains |
— extensions of BPZ
— mathematics of infinite dim alge- "t
bras and related topics T e e s we e
— related integrable systems




John Cardy



New directions, new results : 1984-86

Minimal models, including Ising, 3-state Potts, ...

Singular vectors lead to (partial) differential equations for correlators (con-
formal blocks): example of ¢ = %, M(5,6): 3-state Potts model [V.Dotsenko
1984]

Integrable (Coulomb gas) representations [V. Dotsenko—V. Fateev 1984]

More applications to stat mech [J. Cardy]

— surface critical behavior [J.Cardy 1984]

— ¢ measures a finite size (Casimir) effect Eo=fL—¢;
[H.Blote—J.Cardy—M.Nightingale ; I.Affleck,1986]

— boundaries and finite size scaling [J.Cardy 1984-86]

and condensed matter: quantum spin chains [I. Affleck1985, .. .]

Unitarity constraints [D.Friedan—Z.Qiu—S.Shenker, 1984]
Unitarity: LIL = L_, and ¢< 1 only consistent if c=1 — 6

m(?’:ﬁ 7’)]”-L2|—1)—87’I’L)2—1
and h = h, = D




Extensions to higher symmetries [A. Zamolodchikov]
— 2-d current (aka affine Kac—Moody) algebras gi, k € N, [V.Knizhnik—A.Z. '84],
— superconformal algebra [D.Friedan—Z.Qiu—S.Shenker 1984] ( “Neveu—Schwarz and

Ramond sectors”);
— W, algebra, parafermionic theories [A.Zamolodchikov '85, —V.Fateev, '87, F.Bais—

P.Bouwknegt—M.Surridge—K.Schoutens '87]

Coset theories [P.Goddard, A.Kent, D.Olive, 1985] g/b

— A most useful tool to manufacture new CFT's !

— s5u(2), x su(2),/5u(2),4, hasc=1— (k+2)6(k+3): FQS condition is sufficient,
and all ¢ < 1 unitary theories exist |

Other applications to stat. mech., in minimal models and beyond
— [G.Andrews—R.Baxter—P.Forrester, D.Huse, 1984]: integrable lattice (height, or
RSOS) models; one of their critical regimes is described by unitary minimal
models.

— Percolation, polymers [B.Duplantier, H.Saleur 1986], ...
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Newer directions, more results : 1986-89

While the previous topics continue to flourish,

— orbifold CFT’s, covariant quantization of the string [D.Friedan—
E.Martinec—S.Shenker'86, L.Dixon—F—M-S '87], N=2 SCFT models of
superstrings [Gepner's7] ; Coulomb gas revisited, etc

new directions develop:

— modularity
— integrability: integrable lattice models and integrable QFT’s

— perturbed CFT's, Zamolodchikov c-theorem
— newer maths, quantum groups, Verlinde algebra and algebraic
geometry. ..



Modularity
Compute the partition function Z on a torus, i.e., with doubly periodic bound-

ary conditions [J. Cardy '86]
— Z must be modular invariant [A.Ferdinand—M.Fisher 1969, C.Thorn 1980]

— If Hilbert space H = @®,;;N;V; ® V4, a finite sum in a minimal (or “rational”)
CFT, then

Z =2 Nax@x(a)

0L /1

where x;(q) = try, ¢**= but now ¢ = e?™'7, 7 = torus modular ratio.
— Characters x transform under a (unitary) finite representation of the mod-
ular group

Xi(T 4 1) = 2™ e/, (1) xi(—1/7) = Sijx;(7)
In particular Z = ). xi(¢)x:(¢*) is modular invariant. But 3 other solutions. . .

Opens the way to

— classification of RCFT's, more below . ..

— Verlinde fusion formula N} = Zg%ﬁf [E.Verlinde 1988]

— BCFT, b.c. changing operators, “Cardy’'s consistency equation” [J.Cardy '89]



Integrability

—All minimal CFT’s admit an integrable lattice realization
[G.Andrews—R.Baxter—P.Forrester, D.Huse 1984, V.Pasquier 1986-88].

— Features of CFT (OPE, fusion algebra, boundary conditions)
have a counterpart on lattice and vice versa [v.Pasquier '87]

— Quantum group [V.Drinfeld,M.Jimbo 1985] is another common fea-
ture. . . [J.Frohlich '87, V.Pasquier—H.Saleur '88-89, E. Lusztig '88; G.Moore—N.Seiberg’89,

C.Gomez—G.Sierra '90,G.Mack—V.Schomerus '90, P.Furlan—A.Ganchev—V.Petkova '91 ...]
Modular tensor category.



Perturbing CFT's

Perturb a CFT: generically, get a massive theory and a RG flow
toward another IR fixed point (another CFT)

— Zamolodchikov c-theorem: (in unitary theories) there is a func-
tion ¢ interpolating between central charges in a monotonous
decreasing way. [A.Zamolodchikov, 1986]

— for specific perturbations, 4 conserved quantities, the massive
theory remains integrable, S-matrix may be computed [A.&AI.
Zamolodchikov 1979, A.Zamolodchikov 1990]

— Case of the Ising model in a magnetic field, Eg theory, [A. Zamolodchikov,
1988] now observed in neutron scattering experiments !

= A flurry of works on various models off criticality, their S-
matrix and correlation functions, form factors, ... Perturbative
methods in the vicinity of the CFT. ..

[T.Hollowood—P.Mansfield, H.Braden—E.Corrigan—P.Dorey—R.Sasaki’'89, P.Christe—G.Mussardo’'89,

]



From 1989 to the 90’s and 2000'’s

— Axiomatizing CFT [G.Moore-N.Seiberg’89, G.Segal'91]

— Perturbing CFT's
Integrable perturbations, S matrix...[. . ]
RG flows between CFT's [P.Dorey—F.Ravanini 1992, VV.Fateev'93,. . ]

— Coupling CFT's to 2D-gravity <+ matrix models [v.Knizhnik—A.
Polyakov—A.Zamolodchikov 1988, F. David, J.Distler—H.Kawai '89]; ... Minimal models

on ‘“random lattices” [I. Kostov '92]

— N = 2 superCFT’s and Topological Field Theories [E.martinec,

W.Lerche—C.Vafa—N.Warner, 1989, ...]

— 2D CFT's and 3D Topological theories [J.Fuchs-1.Runkel-C.Schweigert
2002-]. QOperator algebra approach [A. Ocneanu, J.Bockenhauer—D.Evans—

Y.Kawahigashi et al. '99, F.Xu '98...].



— Boundary CFT, defects ...
— CFT's and finite groups [T.Gannon '99,...]

— Probability (percolation, self-avoiding walks) [J. cardy 92, .. ],

combinatorics (for ex. meander problems [P.Di Francesco—O.Golinelli—E.Guitter])
and SLE

[G.Lawler-O.Schramm—-W.Werner, S.Smirnov,'99-'01 ... J.Cardy, M.Bauer—D.Bernard '02]
— Log CFT's: [V.Gurarie '93, F.Rohsiepe’96, M.Flohr'97,. .., H.Saleur-et-al. . .],

— Non rational CFT's, o-models, Liouville theory [H.Dorn—H.-J.Otto'92,
A.&Al.Zamolodchikov'96, J.Teschner, V.Schomerus, 2003, .. .]

— 2D CFT'’s as a laboratory: computation of entanglement en-
tropy [J.Cardy—P.Calabrese '04,. . ]

etc, etc
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The offspring of BPZ 7



The lure of Classification. ..

2D-CFT tools permit to envisage some classification programs

— classification of “good” representations [Feigin—Fuchs, BPZ]
— classification of unitary ¢ < 1 theories [FQS]
— classification of OPA [P.Christe—R.Flume '87,. .. M.Caselle—G.Ponzano—F.Ravanini'91]
— classification of RCFT's: are all obtained from WZW by cosets, orbifolds
and/or twists ?
— classification of modular invariant partition functions after Cardy:

ADE classification of minimal theories and su(2) affine theories
[A.Cappelli, C.Itzykson, JBZ 1986-88, D.Gepner—Z.Qiu '87, A.Kato '88]

+ Pasquier ADE lattice models [V.Pasquier 1986]



level Z diagram
k+1
2
k>0 Z 7 Ay
i=1
2] 2 2
k=4p >4 Z I + Xapaa|” + 2ropni| P
4 o0dd =1
4p—1 ) 2p-2
2 -
k=4p—2>6 Y bl el + ), (raxaps te.c) Dapi1
Aodd =1 A even=2
2 2 2
k=10 L1 + 271" + s + x5 + s + 21l Eg
2 2 2 2
L= 16 ey + 29l + s +sl™ + by o™ + ol E
= _ 7
+[(z3 + ¥15)X9 +C. c.]
2 2
k=128 L1 + 211 + 210 + 220l + 7 + 213 + 217 + 223 Eg

Table 1: List of modular invariant partition functions of EZ(Z) RCFTs

Ve

are characters of representations of the affine algebra at level k . The last column

shows the associated ADE Dynkin diagram.




G diagram h exponents £,
1 2 3 n
A, *—0 00— —0—0 n+1 1,2,-,n
n+l
I 2 3
Dpiy | ®&—@—0—0—@ 2(n+1) 1,3,,2n+1,n+1
n+2
6
Eg | 2 I 4 5 12 1,4,5,7,8,11
*—o ——@
7
Ey I 2 I 4 5 6 18 1,5,7,9,11,13,17
® 4 L 4 L ]
b
Eg I 2 I 4 5 6 1 30 1,7,11,13,17,19,23,29
L ® 3 ® ® ® ®

Table 2: ADE Dynkin diagrams with Coxeter numbers h and exponents ¢, .

Eigenvalues of adjacency matrix of diagram = 2cos«¥/,/h



The lure of Classification. ..

2D-CFT tools permit to envisage some classification programs

— classification of “good” representations [Feigin—Fuchs, BPZ]
— classification of unitary ¢ < 1 theories [FQS]
— classification of OPA [P.Christe—R.Flume '87,. .. M.Caselle—G.Ponzano—F.Ravanini'91]
— classification of RCFT's: are all obtained from WZW by cosets, orbifolds
and/or twists ?
— classification of modular invariant partition functions after Cardy:
ADE classification of minimal theories and su(2) affine theories
[A.Cappelli, C.Itzykson, JBZ 1986-88, D.Gepner—Z.Qiu '87, A.Kato '88]
<+ Pasquier ADE lattice models [V.Pasquier 1986]
— Why ADE 7 (several answers!) What about higher rank ? Graphs 7
For su(3) v: modular invariants [D.Bernard 1987,..., T.Gannon 1994],
graphs [I. Kostov 1988, P. Di Francesco—JBZ 1989,..., A. Ocneanu 2000]
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— Why graphs 7 BCFT! [J. Cardy'88, M.Bauer—H.Saleur’'s9, P. Di Francesco-JBZ'89]. ..
[I.Affleck—M.Oshikawa—H.Saleur'97, A.Sagnotti—Y.Stanev, J.Fuchs—C.Schweigert, A.Recknagel-
V.Schomerus 1995-97, Runkel’'98], [G.Watts, R. Behrend—P. Pearce—V. Petkova—JBZ 1998]:

adjacency matrices of graphs encode the boundary conditions and form a

matrix representation of the fusion rules, so as to satisfy Cardy’s equation.

Classify non-negative integer matrix representations (“nimreps” ) of the fusion
algebra nin; = ijnk

For su(2) theories and minimal models, n; — ADE Dynkin diagrams! X



—Why graphs ? BCFT! [J. Cardy’'88, M.Bauer—H.Saleur’'89, P. Di Francesco-JBZ'89]. .. [I.Affleck—
M.Oshikawa—H.Saleur’97, A.Sagnotti—Y.Stanev, J.Fuchs—C.Schweigert, A.Recknagel-VV.Schomerus
1995-97, Runkel'98], [G.Watts, R. Behrend—P. Pearce—V. Petkova—JBZ 1998]:

adjacency matrices of graphs encode the boundary conditions and form a
matrix representation of the fusion rules, so as to satisfy Cardy’s equation.

For minimal models, ADE Dynkin diagrams!

— classification of topological defects [V.Petkova—JBZ 2000] and Ocheanu graphs
[A.Ocneanu, '95]




—Why graphs ? BCFT! [J. Cardy’'88, M.Bauer—H.Saleur’'89, P. Di Francesco-JBZ'89]. .. [I.Affleck—
M.Oshikawa—H.Saleur’97, A.Sagnotti—Y.Stanev, J.Fuchs—C.Schweigert, A.Recknagel-VV.Schomerus
1995-97, Runkel'98], [G.Watts, R. Behrend—P. Pearce—V. Petkova—JBZ 1998]:
adjacency matrices of graphs encode the boundary conditions and form a
matrix representation of the fusion rules, so as to satisfy Cardy’'s equation.
For minimal models, ADE Dynkin diagrams!
— classification of topological defects [Vv. Petkova—JBZ 2000] and Ocneanu graphs
— determination of OPE coefficients [Vv.Pasquier 1987, V.Petkova—JBZ 1994—2000]
in terms of graphs and Ocneanu cells. . .

R
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—Why graphs ? BCFT! [J. Cardy’'88, M.Bauer—H.Saleur’'89, P. Di Francesco-JBZ'89]. .. [I.Affleck—
M.Oshikawa—H.Saleur'97, A.Sagnotti—Y.Stanev, J.Fuchs—C.Schweigert, A.Recknagel-V.Schomerus
1995-97, Runkel'98], [G.Watts, R.Behrend—P.Pearce—V.Petkova—JBZ 1998].
adjacency matrices of graphs encode the boundary conditions and form a
matrix representation of the fusion rules, so as to satisfy Cardy’'s equation.
For minimal models, ADE Dynkin diagrams!
— classification of topological defects [V .Petkova—JBZ 2000] and Ocneanu graphs
— determination of OPE coefficients [V.Pasquier 1987, V.Petkova—JBZ 1994—2000]

in terms of graphs and Ocneanu cells. ..

The underlying structure is a “weak Hopf algebra’ . ..

[G.BOhm-K.Szlachanyi'96,. .. P.Etingof—D.Nikshych—V.Ostrik'05]

— classification of weak Hopf algebras 77



ToO summarize

The BPZ paper of 1983 has opened a new chapter in the big
book of QFT.

It had incredibly many ramifications and applications, from math-
ematics to string theory, stat. mech. and condensed matter.

The story is still going on, both in 2D and in higher dimensions.

*
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