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Maxwell equations

It is well known that Maxwell equations may
be written in several equivalent forms:

auFluy — J]/, 6'LL*FM]/ — O (1)

or

OEr = Jo (= 4mp),

O0Ey — epomOpHm = Ji (= —4njy),

op.H, = 0,

OoHy. + €1prOpEm = O (2)
where Er = Fio, Hy = (1/2)eppmFpm,,

or
OpFF = Jo, OoFy *icgmOiFy = Jy (3)
where



Not so well known is the fact that the eight
equations in (3) can be rewritten as two con-
jugate scalar equations in the following way:

IT Ft () = J(z,2) . (5a)
I~ F(2) = J(27%) (5b)
where

]3‘ — Ea_|_‘|‘(9v — (6a)

1/ _
— 5(zz8_|_ + 20y + 207 + 3_>8z )

Ig = 204+08; — (6b)

1

. (zza+ + 20y + 205 + a_)ag

T+ =x9E*x3, V=x1—1TO, V=x]+ 1T,
O+ =0/0x+, Oy=0/0v, 0O;F=030/0v (7)



FT(z) = 22(F] +iF)) —22F —

— (Ff —iF) (8)
F~(z2) = Zz2(Ff —iFy)—2zF; —

— (Fy +iF5)
J(z,z2) = Zzz(Jog+ J3)+2z(J1 —iJ2) +

+ z2(J1 +iJ2) + (Jo — J3)

where we continue to suppress the z,, resp., z+,v,v, dependence
in ' and J. (The conjugation mentioned above is standard and in

our terms it is : I} «— I, Ft(z) «— F~(2).)

It is easy to recover (3) from (5) - just note
that both sides of each equation are first order
polynomials in each of the two variables z and
z, then comparing the independent terms in
(5) one gets at once (3).



Writing the Maxwell equations in the simple
form (5) has also important conceptual mean-
ing. The point is that each of the two scalar
operators 16",10_ IS indeed a single object,
namely it is an intertwiner of the conformal
group, while the individual components in (1)
- (3) do not have this interpretation. This is
also the simplest way to see that the Maxwell
equations are conformally invariant, since this
IS equivalent to the intertwining property.

To check the intertwining property we rewrite
the operators (6) in the following form:

1
I = 5(21112 - 31211>,

_ 1
IO = 5(21312 — 3[213) (9)
where

Il — 83, 12 — EZ@++Z@U—|—58{)—|—8_, I3 = 85
(10)



Let us briefly recall that a Verma module
VA over GC (=GL@H®G) is defined as the
highest weight module over ¢C  with highest
weight A € ‘H* and highest weight vector vg €
VA, induced from the one-dimensional repre-
sentation Vo =Cvg of U(B), (B=H®G4 is
a Borel subalgebra of QC), such that:

X vg = O, VXEQ-F
Huv = AH)v, VYHeH (11)

Verma modules are generically irreducible. A
Verma module VA is reducible [BGG] iff there
exists a root 3e€ At and m e N such that

(AN+p, BY) = m (12)

holds, where p =33 A+ o . If (12) holds
then the reducible Verma module VA contains
an invariant submodule which is also a Verma
module VAN with shifted weight A’ = A —mg.
This statement is equivalent to the fact that



VN contains a singular vector wvs € VN, such
that vs #= &vg, (0 &€ C), and :

X’US
H vg

0, VXEe Q_|_ (13)
N(H)vs, N = AN—mB, VHeH

Restricting to the si(4) case, let's denote the
simple roots by «ap, (k=1,2,3). Explicitly, the
singular vectors of weight a1 = a1 + ao,
o3 = ao + 3. are:

vgz — const.(QXl_XQ_ — 3X2_X1_>v0,
v§3 = const.(QX:,:XQ_ — 3X2_X§)vo (14)

where Xk_ are the simple negative root gen-
erators.

Now it remains to pass from generators Xk_
to their right action =wr(X,) on the coset
Y = SL(4)/B, where B is a Borel subgroup



of SL(4) consisting of all upper diagonal ma-
trices. The local coordinates of ) may be
given in the following matrix form:

1 O O O

z 1 0 O

v x_— 1 O (15)
$_|_ 5 Z ]_

Then we can derive (possibly after change of
variables) the relation between (10) and wr(X, ):

I, = wr(Xy) (16)

Now we see that the variables z,z which we
introduced as book-keeping device, together
with the Minkowski variables x4, v, v, have def-
inite group-theoretical meaning as six local co-
ordinates on the flag manifold ). under a natural
conjugation this is also a flag manifold of the conformal group

SU(2,2).



Thus, we have seen an example of the
main group-theoretical ingredient: that ev-
ery Verma module singular vector provides
an invariant differential operator. [Da,DI]



To put the example in the general picture we
recall the physically relevant representations
TX of the 4-dimensional conformal algebra su(2, 2)
may be labelled by x = [n1,n5;d], where ni,n-
are non-negative integers fixing finite-dimensional
irreducible representations of the Lorentz sub-
algebra, (the dimension being (n1+1)(n>+1)),
and d is the conformal weight (or dimension,
or energy).

[ In the literature these Lorentz representations are labelled also by
(J1,42) = (n1/2,n2/2).] [ For the conformal group we also have to
take into account a central element taking sign values, however,

these are fixed for the reducible cases we consider.]

Then the intertwining properties of the opera-
tors in (6) and some more are presented in the
following diagram:



Fig. 1. Intertwining diagram for su(2,2) involving Maxwell equations

where the representations have the signatures:

x(¢) ~ [0,0;0], x(®) ~ [0,0;4],
X(Au) = [1,1; 1], X(Ju) = [1,1; 3],
x~ =10,2;2], xT=1[2,0;2] (17)

The invariant differential operators in the dia-

gram are denoted by do, djk corresponding to

the singular vectors of weight apo, Qjf, rESP.



Formulae (17) are part of an infinite hierarchy
of couples of first order intertwiners. EXxplicitly,
instead of (17) we have [Db,DI]:

Xi =lk+2,k2], xp=Ikk+22],
xp=lk+1,k+1,3], keZy (18)

while instead of (5) we have:

LF B2 = 227,  (193)
I F_(2,z) = Ji(z,2) (19b)
where (k € Z4 )
ro= k+2(za++av) — (20a)
_ %(zz6++zav+zafg+a_)az,
k42 N
o= 2 <z8_|_—|—&u) (20D)
1

- E(zza+ + 20, 4 705 + a_)a;

while F,;"(z,Z), F.(2,2z), Ji(z2,2z), are polyno-
mials in z,z of degrees (k + 2,k), (k,k + 2),
(k+1,k+ 1), resp., as explained above.



Note that we can rewrite (20) as (9):
L1
Iy =k +2DIlz — (k+3)2l1),

I = %((k +2)38 - (k+ 3)Dl3) (21)

If we want to use the notation with indices as in (1), then F,j(z,z)
and F, (z,z) correspond to Fja,,.. o, Which is antisymmetric in the
indices u, v, symmetric in a1,...,ax, and traceless in every pair of in-
dices, while Ji(z,z) corresponds to J, a,...a, Which is symmetric and
traceless in every pair of indices. Note, however, that the analogs
of (1) would be much more complicated if one wants to write ex-
plicitly all components. The crucial advantage of (19) is that the
operators Ik,i (k > 0) are given just by a slight generalization of

+
IF.

We call the hierarchy of equations (19) the
Maxwell hierarchy. The Maxwell equations
are the zero member of this hierarchy.

Everything above is part of the general classi-
fication scheme:
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The signatures in the figure are:

Xpun (p,n, 2—v—(p+n)/2) (22)
Xpom = (,p; 24+ v+ (p+n)/2)

Xpon = (H+v,n+v; 2—(p+n)/2)
Xobn = (n+v,p+v; 2+ (p+n)/2)
Xpon = (W,p+v+n; 24 (p—n)/2)
(p+v+nv;, 24 (n—p)/2)
p,v,n € N

3
|

The invariant differential operators in the di-
agram are denoted by d%, d7,, dg3, 13 corre-
sponding to the singular vectors of weight vaso,

nol1o, pans3, V13, FeEsp.

We exhibit also an alternative of the same sit-
uation showing also the integral intertwining
operators in Fig. 2"
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Fig. 2'. Alternative of Fig. 2 with
integral operators shown as horizontal dashed lines



The above diagram appeared first for the Eu-
clidean conformal case so(5,1) = su*(4) in
[DP]. In the case of so(4) (and so(n)) symmet-
ric traceless tensors only the top four represen-
tations with n = p are relevant [DMPPT]. In
particular, the cancelation of kinematical poles
in the derivation of the OPE mentioned in the
talk of G. Mack uses the partial equivalence be-
tween the representations X;'[m and Xﬁ{,'jn pro-
vided by the operator di5.

Besides in the sextets the reducible VMs occur
in some doublets which we omit for the lack
of space here. The sextets and the doublets
exhaust all reducible VMs induced from finite-
dimensional Lorentz irreps.

Next we show the cases so(p,q) :



dp,
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Fig. 3. Diagram for the cases so(p,q), p+ q = 2h+ 2, even
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Fig. 4. Diagram for the cases so(p,q), p+ q=2h+ 3, odd



Conformal Lie algebras

We start with the class of Hermitian symmet-
ric spaces. The algebraic criterion is that the
maximal compact subalgebra IC of G is of the
form:

K = so(2) e K’

The Lie algebras from this class are:

so(p,2), sp(p,R), su(p,q),

s0"(2p), Eg(_1a), E7(_25)

These groups/algebras have highest/lowest weight
representations, and relatedly (anti-)holomorphic
discrete series representations.

We already considered the conformal algebras
so(p,2) in p-dimensional Minkowski space-time.
In that case, there is a maximal Bruhat decom-
position that has direct physical meaning:

so(p,2) = MOADSN ON,



M = so(p—1,1) , Lorentz subalgebra
A, dimA=1, dilatations,
N, dimN =p, translations,

N, dimN = p, special conformal transformations

Another special feature of the conformal alge-
bra: the complexification of the maximal com-
pact subalgebra K is isomorphic to the com-

plexification of the first two factors of the Bruhat
decomposition:

Kkt = so(p,C) @ so(2,C) =
= so(p—1, 1)(C @ so(1, 1)(C = MCqpaC

In particular, the coincidence of the complexi-
fication of the semi-simple subalgebras:

IC/(C — MCC (*)



means that the sets of finite-dimensional (nonuni-
tary) representations of M are in 1-to-1 cor-
respondence with the finite-dimensional (uni-
tary) representations of X'.

It turns out that some of the hermitian-symmetric
algebras share the above-mentioned special prop-
erties of so(p,2).

T his subclass consists of:

so(p,2), sp(p,R), su(p,p),

so"(4p), E7(_2s)

In view of applications to physics, we proposed
to call these algebras 'conformal Lie algebras’,
(or groups).

This class was identified by G. Mack (2007)
from different configurations.



The Lie algebra su(p,p)

Let G = su(p,p), p > 2. The maximal
compact subgroup is K £ u(1) @ su(p) ® sul(p),
while M = sl(p,C)r. The number of ERs in
the corresponding diagram (multiplet) is equal
to

2
WG, HO) /W (ME, HE)| = ( pp)
The signature of the ERs of ¢ is:

X = {mn1,--,Mp_1,Np4p1 -, N2p_1,;C},
n€EN, c=d-—p

Below we give the diagrams for su(p,p)

for p = 3,4 (p = 2 was considered as so(4,2)).
These are diagrams also for si(2p,R) and for
p = 2k these are diagrams also for su*(4k) [Dj,DI].

We use the following conventions. Each in-
variant differential operator is represented by



an arrow accompanied by a symbol z]k en-
coding the root B, , and the numbers m; € N

which encode the reducibility (12) of the cor-
responding Verma module.



Fig. 5. Pseudo-unitary symmetry su(3,3)

The pseudo-unitary symmetry su(p,p) is similar to conformal symmetry
in p? dimensional space, for p = 2 coincides with conformal 4-dimensional case.

By parabolic relation the su(3,3) diagram above is valid also for si(6, R).



Fig. 6. Pseudo-unitary symmetry in 16-dimensional space.

By parabolic relation the su(4,4) diagram above is valid also for si(8, R) and su*(8).



The Lie algebras sp(n,R) and
sp(5,5) (n—even)

Let n>2. Let G = sp(n,R), the split real
form of sp(n,C) = ¢C. The maximal com-
pact subalgebra is K = u(1l) & su(n), while
M = sl(n,R). The number of ERs in the
corresponding diagram (multiplet) is:

W(GE HO W ME HE)| = 27
The signature of the ERs of ¢ is:

X — {’I’L]_,...,?’Ln_]_;C}, n]ENa

Below we give pictorially the multiplets for sp(n,R)
for n = 3,4,5,6 (n = 2 was already consid-
ered as so(3,2)). For n = 2r these are also
multiplets for sp(r,r) [Dj,DI].



Fig. 7. Main multiplets for Sp(3, IR)



Fig. 8. Main multiplets for sp(4, IR) and sp(2,2)
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Fig. 9. Main multiplets for Sp(5, IR)



Fig. 10.
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Main multiplets for Sp(6, R) and sp(3,3)



The Lie algebras so*(2n)

The Lie algebra G = so*(2n) is given by:

so'(2n) = {X € so(2n,C) : JnCX = XJ,C} =
. _(a b
ta = —a, szb}. (23)

dimp G = n(2n — 1), rankG = n. The max-
imal compact subalgebra is K = u(n). For
even n = 2r the algebra G = so*(4r) belongs
to the class of 'conformal Lie algebras’ (since
M = su*(n)).

Further we restrict to the case ¢ = s0*(12),
since so*(4) £ s0(3)®s0(2,1), s0*(8) = s0(6,2).

The number of ERs/GVMs in the correspond-
ing multiplets is [Dj]:

W (G", HO)/IW(KE HY)| =

= [W(s0(12,C))|/|W (sl(6,C))| = 32

where H is a Cartan subalgebra of both G and
IC.



Fig. 11.

612

SO*(12) main multiplets



The Lie algebras E;(_55) and L7

Let § = E7(_o5). The maximal compact sub-
group is K = eg @ so(2), while M = E6(_6).

The signatures of the ERs of G are:

X = {n1,...,ng;c}, n; € N .

The same can be used for the parabolically
related exceptional Lie algebra E; 7y [Dj,DI].

The number of ERs in these main multiplets
IS:
WG HY)| _ [W(Ey)| _ 2193%57

= = = 56
WMEHE)| W (Ee) 27345

(24)
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Fig. 12. Main Type for E7(_ss)



The Lie algebras Eg(_14), Fge) and Eg o)

Let G = FEg_14). The maximal compact
subalgebra is K = 50(10) @ so(2), while M =
su(5,1).

The signature of the ERs of G is:

X_{n17n37n47n57n6rc}7 C_d_T

The above can be used for the parabolically
related exceptional Lie algebras FEgy and
Ee(2) [Di,DI].

( The algebra Eg(_14) does not belong to the class of conformal Lie
algebras and the formula as (24) for the main multiplet does not
hold here.)

There are 70 VMSs in the main multiplet:
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Quantum groups

We go back to the 4D conformal case. The
form (9) is that we generalize for the deformed
case. In fact, we can write at once the g-
deformed form [Dh,DII]:

- 1 - - - -
o= (42 hk - n+3l,Bh).

I = %([n + 2], Talp — [0+ 3], i2f3>(25)
where [m], = % are the ubiquitous g¢-
numbers.

Here f,ﬁf are obtained from the lowest possible
singular vectors of Uy(sl(4)), namely, those of
weight «aq9,an3 [Dh,DH].

To proceed further, we should make this form
explicit by first generalizing the variables, then
the functions and the operators.



Quantum Minkowski space-time

We know from [Dh,DII] what are the proper-
ties of the non-commutative coordinates on
the SL,(4) coset. Thus, we obtain for the
commutation rules of the g-Minkowski space-
time coordinates

TLV = qilvxi, TLV = qilfﬁazi,

ryr_ —r_xqp = Mv, vv = vv (26)

The g-Minkowski length /¢4 is defined as the

g-determinant of M = <x+ Y ):
v T
bg = dety M = xiz_ — qov (27)

and hence it commutes with the g-Minkowski

coordinates. It has the correct classical limit

— .2 =2
by=1 = x§ — ZT~.



For ¢ phase (|g| = 1) the commutation rela-
tions (26) are preserved by an anti-linear anti-
involution w acting as:

wlz+) = 24, wl) = v (28)

from which follows also that w({y) = ¥4 .

The commutation rules involving the spin vari-
ables z,z are:

zz = zz,
T4z = q_lza:_|_, T_zZ = qzr_ — A\v,
vz = q_lzv, vz = q2U — ATy,

Zry = qr4z, 2T = q_la:_Z + v,

Zv = q vzt ATy, 2v = quz,

2y = Lgz, zZlg = L4z (29)
Certainly, the commutation relations (29) are
also preserved (for g phase) by the conjugation
w - supplementing (28) by w(z) = z.
With this conjugation ), becomes a coset of SU,(2,2).



Quantum Maxwell equations hierarchy

The normally ordered basis of the g - coset
Y, considered as an associative algebra is :

Pijkemn = 2 o) 2 2w (30)
i, J, k, €,m,n € Z—|—

We introduce now the representation spaces
CX , x=|[nq1,no;d . The elements of CX,
which we shall call (abusing the notion) func-
tions, are polynomials in z,z of degrees nq,n»,
resp., and formal power series in the quantum
MinkowskKi variables. Namely, these functions
are given by:

~ . _ n1,my -~
@nl,ng(y) — Z 'U’ijk’ﬁmn Pijktmn
i,j,k,@,m,néZ_F
1<ni, n<no

(31)



where Y denotes the set of the six coordinates
on Vg . Thus the quantum analogs of F,
Jn, cf. (19), are :

F;I_ — @n—l—Q,n(?)_: Fn_ — @n,n—l—Q(?)a
Jn = @n—kl,n—l—l(y) (32)

Using the above machinery we can present a
deformed version of the Maxwell hierarchy of
equations. For this we use that the operators
I, are given by the right action of Uy(sl(4)) on

Ve

In = mp(X,) (33)
Explicitly, we have:
I = DT T, Ty (T-T5) ! (34a)
I, = (qMZﬁUTE L P.T. +
+ N, Mz Dy T- T; T, 1 +
+ ¢t Mz Dy — (34b)

~ X\ 1, Nz D_ D, Tq—)) 5 TS
73 = ﬁg 1% (34C)



where we us the g-shift operators Tk:

1 @ijkﬁmn = q @ijkﬁmn

Ty @ijkﬁmn = ¢ @ijkﬁmn
~ Y

1 Pijktmn — 4 Pijklmn
—~ . { ~

T—l— Pijktmn — 49 Pijklmn

T- 5. . — A 5.

v Pijklmn 9 Pijktmn
17 @ij Elmn — q" @ij kfmn

further the qg-difference operators:

where:

— # Mt (T — T

M Saz'jkﬁmn @i—l—l,jkﬁmn

My Qijkemn = Pij+1ktmn
M_ @iiktmn = Pijk+10mn
M—I—@z’jkﬁmn — @ijk,ﬁ—l—l,mn
M5 @ijkemn = Pijktm+1,n
Mz @ijkemn = Pijktm,n+1

Note that for ¢ — 1 we have: T, — 1, D. — 0.



With this we have now the g - Maxwell hierar-
chy of equations - it remains just to substitute
the operators of (34) in (25). In fact, we can
also rewrite these in the g-analog of (19). We
have :

JdT = 5((@@ + Mz@+(T—Tv)_1Ta) [n+2 — N:]g
_q—n—2(ﬁ_fr_ 4 g LDy — (352)
—/\Mvﬂgﬁ_ﬁ+T5> ﬁz) T T_TyT, TS *

I, = %(ﬁq—) + gV, DL T5T-T, 1 — (35b)

—qAMvﬁ_ﬁ+T5) T5[n+ 2 — Nzlq —
~1q"F3 (D + VDT ) DT Ty

Clearly, for ¢ = 1 the operators in (34), (35)
coincide with (10),(9), resp.

With this the final result for the g - Maxwell



hierarchy of equations is:

oI gFib
qln by

oIn (36a)
(36b)

[
K
S



q - d’Alembert equations hierarchy

Next we consider another one parameter hier-
archy:

Wt = Inois 41l (37a)
WO = r-LLo 42, reN,
& = [o,r; g + 1], (37D)
WO = [Lr-15+2, reN
where there are two conjugated equations:
J7 FE =gt (38a)
Iy B o= g (38D)

where ,IF are given by (25).

For the minimal possible value of the param-
eter r= 1 we obtain the two conjugate g -
Weyl equations.



The case »r = 2 gives the g-Maxwell equations
(note that J3T = J¢7). This is the only in-
tersection of the present hierarchy with the g-
Maxwell hierarchy.

We call this hierarchy q - d’Alembert hierar-
chy following the classical case, (cf. [De,DI,DII]),
due to the following. We consider the repre-
sentations x4+ for the excluded above value

r = 0, when they coincide. Thus, we set;: Y%=
Xgi = [0,0;1], F?= F4*. Furthermore, the
relevant equation is the ¢g-d'Alembert equa-
tion [De,DII]:

O, F¢ = J¢ (39)



Weyl gravity equations hierarchy

Next we study another hierarchy which is given
as follows:

ch Cl, (41)
N\ /

where m € N, and the corresponding signa-
tures are:

b = [2m,0;2], x, = [0,2m;2], (42)

X2 [m,m;2 —m], xi = [m,m;2+m)]

The arrows on (41) represent invariant differ-
ential operators of order m. It is a partial case
of the general conformal scheme parametrized
by three natural numbers p,v,n, (cf. Fig. 3),
setting there: v =1, p=mn = m. This hi-
erarchy intersects with the Maxwell hierarchy



for the lowest value m = 1. Below we consider
the linear conformal gravity which is obtained
for m = 2.

Linear conformal gravity

Linear conformal gravity is governed by the Weyl
tensor Cuvor Which is given in terms of the Rie-
mann curvature tensor R,usr, RICCi curvature
tensor R,y , scalar curvature R :

C/u/aT — R,UJI/O‘T — %(QMGRVT + gl/TR,ua —
— g,uTRz/a — gz/aR,uT) +
+ %(g,uagm- — gmgua)R (43)

where g, IS the metric tensor. Linear confor-
mal gravity is obtained when the metric ten-
sor is written as: guv = nMuv + huv, Where n,p
is the flat Minkowski metric, hy, are small so
that all quadratic and higher order terms are
neglected. In particular:

RILLVO'T — %(aMaThVJ_I_aI/aO'hlLLT_a,LLaO'hI/T —&/aTh,ua)



The equations of linear conformal gravity are:
81/87'CMVO_7_ o T,LLO' (44)

where T, is the energy-momentum tensor. From
the symmetry properties of the Weyl tensor
it follows that it has ten independent compo-
nents. These may be chosen as follows (intro-
ducing notation for future use):

Co=Cp123, C1 =022, C2="Cp202,
C3=0C3012, C4=0C021, Cs5=C1012;
Ce = Cp023, C7=0C3132, Cg=0C%123,
Co = C1213 (45)

Furthermore, the Weyl tensor transforms as
the direct sum of two conjugate Lorentz irreps,
which we shall denote as C* (cf. (42) for m =
2). The tensors Ty, and h,, are symmetric and
traceless with nine independent components.

Further, we shall use again the fact that a
Lorentz irrep (spin-tensor) with signature (nq,n»o)



may be represented by a polynomial G(z,z) in
z,z of order n1,n»o, resp. More explicitly, for the
Weyl| gravity representations mentioned above
we use:

CT(z) = Acf + 8¢t + 20 + 0 +¢f
C~(z) = z*C; +2°C5 +7°C5 +2C] +Cf

T(2,2) = 2°%°Thy + 2°2Thy + 2°Thg +

+272°T] 5 4 22T 1 + 2T +

+Z22T8o + 2TH1 + Tho (46)
h(z,2) = 2°Z°hhy + 2°Zh1 + 2%hhg +

+22%h 5 4 2Zhj{ + zh o +
+2%ho + Zho1 + hoo

The components C,f are given in terms of the



Wey!| tensor components as follows:

1 1
Cg =02~ -C1-Cs+i(Co+ O3+ Cr)
Cil_ = 2(Cs — Cg+1i(Cyg — C5))
CF = 3(Cy —iC3) (47)
C3 =8(Cs+ Cg +i(Cy + Cs))

1 1
Cf =02~ C1+Cs+i(Co+ -C3— Cr)

_ 1 , 1
Co = C> —501 — Cg —Z(Co-|-503+07)

C{ = 2(Cy — Cg —i(Cqg — C5x))
Cy =3(C1 +1iC3)
C3 = 2(Ca+ Cg — i(Cy + Cs))
B 1 . 1
Cq =C2—5C1+Co —Z(Co-I-ECz;—C?)

while the components T,L-’j are given in terms of



Ty as follows:

T5o = Too + 2703 + 133

Ty, = Too — T33

Too = Too — 2703 + 133

T51 = To1 + iToo + Thiz + iTo3

T1o = To1 — iTop + T13 — T3

Tio = To1 + iTo2 — Th3 — 153

To1 = To1 — iTop — T13 + T3

Tho = T11 + 2iT10 — Too

Too = Th1 — 2iT12 — Too (48)

and similarly for h;; in terms of hyy .

In these terms all linear conformal Weyl gravity
equations (44) (cf. also (41)) may be written
in compact form as the following pair of equa-
tions:

ITCT () = T(z,72), I-C(2) = T(z,7%2)
(49)



where the operators I* are given as follows:
T = (ZQEQai + 2202 4 2202 + 02 +

+22220,04 + 227%04.05 +
—|—225(8_8_|_ + 0v05) +
127005 + 2z8v8_)822, _

6 (zzQai + 202 + 2230,04 + 720,05 +

+E(0-04 + 000p) + 000 ) 0: +

+12(,526>§r + 82 + zzavaJr) , (50)
I~ = (22525& + 2202 4 2202 + 02 +

+22220,04 + 2272005 +
+225(8—8—|— + 0v0p) +
+220_05 + zzava_)ag -

~6(2207 + 202 + 2220, 05 + 220004 +
2004 + 0,05) + 0-05 ) 0z +

4-12(,226@r + 02 + 22(9_|_an>



To make more transparent the origin of (49)
and in the same time to derive the quantum
group deformation of (49), (50) we first intro-
duce the following parameter-dependent oper-
ators:

1
I = 5( (n—1)I2I5 —2(n° — 1)[1131; +
+ n(n + 1)151%), (51)

1
I, = 5( (n—1)I315 — 2(n? — 1)I31313 +

+ n(n 4+ 1)1§1§)

where Il — az, 12 — Ez8+ —|— Zav -|— 5&5 —|— 8_,
I3 = 93, are from (10). We recall that group-
theoretically the operators I, correspond to the
three simple roots of the root system of si(4),
while the operators I+ correspond to the singu-
lar vectors for the two non-simple non-highest
roots. More precisely, the operator L;" IS ob-
tained from the si(4) formula for the singular



vector of weight mioa12 = 2a12, While the op-
erator I, corresponds to weight mozap3z =
2a3. The parameter n = max(251,275).

It is easy to check that we have the following
relation:

I+ =1f (52)

i.e., (49) are written as:
I et (z) = T(z72), I; C7(2) = T(z7%)
(53)

Using the same operators we can write down
the pair of equations which give the Weyl ten-
sor components in terms of the metric tensor:

X nizz) = C (), 15 h(z,2) = CT(2)
(54)

We stress again the advantage of the index-
less formalism due to which two different pairs



of equations, (53), (54), may be written us-
ing the same parameter-dependent operator
expressions by just specializing the values of
a parameter.

The above equations are is immediately gen-
eralizable to the deformed case.

Using the Uy(sl(4)) formula for the singular
vector given in [Dh,DII] we obtain for the g¢-
analogue of (51):

1
qlﬁl_ — 5([”](1 [n —1]q ql% ql% -
— [Q]q [n — 1]q [n + 1]q qll qlg qll +
g In + 1y a13413) | (55)
. 1
glp, = 5([“]61[”— 1]qql?2>qI§ -

— [2lgIn — 1lg[n+ 1gql3 ¢I5 ¢I3 +
+[n]q [n + 1]q qI% qI:’%)

where the g-deformed I, were given above.



Then the g-Weyl gravity equations are (cf. (53)):

Jdi CT(z) = T(z2), Jdy C7(2) = T(z,%)
(56)
while g-analogues of (54) are:

Jd3 h(z,2) = C(3), oI5 h(z,2) = CT(2)
(57)
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