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Abstract

The Clifford algebra Cl(4,1) ~ C[4], generated by the real (Majo-
rana) y-matrices and by a hermitian s, gives room to the reductive Lie
algebra u(2,2) of the conformal group extended by the u(1) helicity op-
erator. Its unitary positive energy ladder representations, constructed by
Gerhard Mack and the author 50 years ago, opened the way to a better
understanding of zero-mass particles and fields and their relation to the
space of bound states of the hydrogen atom. They became a prototypical
example of a minimal representation of a non-compact reductive group
introduced during the subsequent decade by Joseph.
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Should one aim to emphasize the role of the conformal group in physics, one
may start with the early realization — by Bateman and Cuningham in 1909 — of
the conformal invariance of the classical Maxwell equations and continue with
the 1918 Weyl attempt (praised decades later by Dirac) to construct an affine
(Weyl) conformal invariant unified field theory. .. We are choosing a less glorious,
rather personal path: from playing with the Cl(3,1) y-matrices, through the
ladder representations of u(2,2) to the modular form G4(7) and its relation to
Planck’s black body radiation law.

1 The Lie subalgebra u(2,2) of Cl(4,1); ladder
representation

Dirac was recalling in his later years that, on the way of discovering his beautiful
equation he was playing with matrices. It is an entertaining game, it can be
recommended to curious highschool students. If we endow the Clifford algebra
C1(3,1) with a hermitian conjugation such that for

[’Ym'Yuh =27, (nuu) = diag(fl, 1,1, 1)

we set
T = MV ()™ = % (1.1)
then 7, and their commutators preserve an indefinite hermitian form
Pp:=¢"By where B =p5, =1, trf=0, (1.2)
in the sense:
7;5+57u:0:>7:y5+5’7uu:0 for ’Y;w:%h/;m%/]' (13)

In fact, C1(3,1) =~ R[4] (#£ CI(1, 3)!) — that’s why we have Majorana spinors —
and the maximal Lie subalgebra of C1(3,1) is so(3,2) ~ sp(4,R) (spanned by
~x and v, ). We need a hermitian chirality matrix s, anticommuting with ~,,,
which together with 7, generates the Clifford algebra Cl(4,1) ~ C[4], in order
to obtain a maximal (16 dimensional) Lie subalgebra u(2,2) of complex 4 x 4
matrices X satisfying X*8 + X =0 (1.3).

Remark 1.1. If we define the Clifford conjugation X — X ™ as an algebra anti-
homomorphism (i.e. such that (XY)™ = YTX™T) with the property 7 = —v,
for all five generators of Cl(4,1) then the set of all X € Cl(4,1) for which
X* = —X spans the Lie algebra u(2,2) — see [T11], Proposition 2.2.

We arrive in this way at the conformal Lie algebra su(2,2) ~ so(4,2) ex-
tended by the u(1) helicity operator.

As the conformal group includes dilations it would be broken by dimensional
parameters like masses; we can only expect unbroken conformal symmetry for



massless particles. But Wigner taught us [W39] that all particles — massive and
massless — are described by (projective) irreducible representations (IRs) of the
(10-dimensional) Poincaré subgroup P of the conformal group. An IR of U(2, 2)
is expected to split, in general, into a continuum of IRs of P. It turned out that
the massless IRs of U(2,2) are exceptional [MT]: they remain irreducible when
restricted to P. Such representations were later called minimal (see [T10] for a
review and the Note after Eq. (1.16) below for more references).

The passage from the 4-dimensional non-unitary representation of u(2,2) to
infinite dimensional unitary positive energy irreducible representations (UPEIRs)
uses the creation and annihilation (or emission and absorption) operators of
Dirac’s oscillators [D27].

Assume that ¢ and @ (= ¢*8) obey the bosonic canonical commutation
relations:

[(pa7<p5} =0= [‘Zaﬂzﬁ]v [‘paﬂzﬁ] =5g (O‘7B: 1727374)' (1'4)
Then the “second quantized” ladder operators X = pX ¢ satisfy
[X.V] = [X,Y] := §X,Y]e. (1.5)

There are two types of unitary ladder representations of u(2,2): lowest and high-
est weight representations. To define them we introduce the standard Chevalley-
Cartan basis of su(2,2):

Ei=; ¢, F,=0in1¢", Hi=E,F] =3¢ — Giy10™! (1.6)

i=1,2,3.
A lowest weight (LW) and a highest weight (HW) vector are defined as eigen-

vectors of the Cartan elements H; annihilated by the lowering and by the raising
operators F; and E;, respectively:

F[LW) =0 = (Hp — 1) [LW), E; [HW) = 0 = (Hy + 1) [HW) (1.7)

1 =1,2,3; 0 is the highest root: Hy = H; + Hs + H3. We shall be interested in
LW representations since they are also the positive energy ones. The Fock space
vacuum |0) (= |0)rw) is in this case the unique LW vector that transforms under

an one-dimensional representation of the maximal compact subgroup S(U(2) x
U(2)) of SU(2,2):

Eq|0) =0=Es5|0), (H.—2)|0) =0, H. = Hy +2Hs + Hj (1.8)
(H. being the generator of the centre U(1) of S(U(2) x U(2)). We shall demon-
strate in Appendix A that the conditions (1.7) (i.e. F;|0) =0, ¢ = 1,2,3) and

(1.8) are equivalent to

al0) =0="5[0) (a=(ar,a2), b= (b1,b2)) (1.9)



for

1 -1
a:%ﬁw’b:%a or sp(l?*),&(a,b) (110)

(the last two formulas are valid in a S-diagonal realization of Cl(4,1)). In order
to define the energy-momentum 4-vector one needs the projection on positive
eigenvalues of the chirality matrix ~s.

The eleven matrices

Vv = 5 V], v =10,1,2,3, p<v,
L£7s
2

span the Poincaré subalgebra of u(2, 2) extended by dilations (the automorphism
algebra of the Poincaré group). We have, IT; II_ = 0 so that, in particular,

vs and y, I =11 ~,, i = (1.11)

Tu Iy Iy =0= [’VMH-H’YV H+] =05 57 I, = T I (1-12>

thus v, II; satisfy the commutation relations of the generators of translation.
As we shall see in Appendix A the 4-momentum p,, (the hermitian generators
of translation) defined by

SVl o =ipy (1.13)

is massless, i.e. p?> = 0, and has positive energy:
po=Vp* >0 (P> =pi+p5+p3). (1.14)
For fixed (twice) helicity
h=¢p:=0p—(0[¢pl0) =a’a—"b"b (1.15)

the ladder representation of U(2,2) is irreducible and remains irreducible when
restricted to the Poincaré subgroup (see [MT] and Appendix A below). It is
a prominent exemple of what was later called a minimal representation: it
corresponds to the unique minimal (6-dimensional) nilpotent orbit of su(2,2) —
the orbit of the highest root Fjp:

(Eg = [[Er, Es), Es] = aj by, [Ey, Ey] = aj by,

[EQ,Eg] = a§ b; s E1 = a; as , E3 = —bl b; ,HQ) . (1.16)

The Gelfand-Kirillov dimension of these representations is three — coinciding
with the number of arguments p = (p1,p2,ps) of the momentum space wave
function of a massless particle.

Note. In the mathematical literature the oscillator representation is often re-
ferred to Segal-Shale-Weil. If the first papers [S, Sh] were physics’ inspired,
Weil’s work [W] related the subject to number theory and automorphic forms



that increased markedly the attraction to mathematicians. This trend was re-
inforced by another influential paper (of 14 years later) [KV]. (A four-years-old
expository paper [AP] emphasises number theoretic applications and Howe dual-
ity; other aspects are covered in [K].) Minimal representations were introduced
by Joseph [J] in mid 1970s. The notion of reductive dual pair (like U(2,2) and
its U(1) centre) was introduced by Howe around the same time and eventually
published in [H85, H89]. Surveys written by — and addressed to — physicists
include [GP, T10].

Coming back to massless particles, the question arises what do we gain
by considering a larger (conformal) symmetry group if we end up with “the
same” Poincaré group representation? We shall exploit next (in Sections 2
and 3) two such interrelated features: (i) the existence of a natural conformal
compactification M of Minkowski space; (ii) the presence of a complete set of
commuting observables, with a discrete spectrum. In particular, the conformal
Hamiltonian

H=1H. =3 (a"a+bb") (1.17)
(where H, = Hy + 2H> + H3, (1.8)) has a positive integer spectrum in the Fock
space Fg of the zero helicity massless field ¢.

2 Conformal compactification of space-time and
the tube domain

Dirac [D36] has defined conformally compactified Minkowski space as a projec-
tive quadric in 6-space:

M=Q/R", Q={€R\{0}: §, " =€ —& = &6} (2.1)

Identifying the cone at infinity C\, with the intersection M with the hyperplane
&4 = 0 we can express the rays in Q\Cs in terms of the coordinates z* of a
point in Minkowski space M as:

Q\Ooo = {fu = §+I’u, §_ = £+x2; §+ 7é 0} ~ M. (22)

If we denote such an embedding as z — & (y — n,) we would have (§; —
ny)? = —2&m, = &4ny(r — y)2. The compactified Minkowski space M (2.1)
is isomorphic to the product of a circle and a 3-sphere with identified opposite
points. To see this, it is convenient to use pseudo-orthogonal coordinates £_1
(= —¢1) and & (=€) such that €2, — €7 = £,£_; then

M=Q/R ={6: &, +&§=1=€+&}/{¢ ¢} (2.3)

There exists a remarkable complex variable parametrization of M [T86] related
to the real coordinates x € M by a complex conformal transformation g. : M —
FE¢ with no real singularities



M= {Z“ 8 (Z = 2'50) ca=1234 (7 = (22)° = 1)}

g — €
T 1— 22 1+ 22 0
PES = ¢, . — , e —, = — 9 . 2.4
{z ge(x) : 2 e 24 50() w(x) 5 iz (2.4)
Note that if we set x4 = —iz? then g. in (2.4) can be viewed as an involutive

conformal transformation of the (real) euclidean space E into itself, its inverse
being given by the same formulas:

T S ot AR & A
T = ge(2) T w(z)’ 472w(z)’ (2) = 2 + 2
1 ,  da? o2 dz?
(cCen=55) = Gy = iy (25)

In a relativistic quantum theory of a local field ¢(z) (with energy-momentum
spectrum in the forward light-cone) the vector-valued Wightman distribution
(x)|vac) is the boundary value of an analytic vector-function, ¢(x + iy)|vac),
holomorphic in the forward tube domain

T+={w+iy:x7yeR4,y°>|y <=\/yf+y§+y§>}- (2.6)

As a consequence the 2-point vacuum expectation value w(z; — x2) = (p(z1)
©(x2))o admits an analytic continuation w(x + iy) in the backward tube T_ (i.e.
for y° < —|y|). Remarkably, both tube domains 7. are conformally invariant —
without any assumption of conformal invariance of the underlying theory® [U].
Noting further that g. acts without singularity on the tube domain (2.6) we can
surmise that one can define a compact picture transform ¢(z) of the field ¢(x)
such that the vector function ¢(z)|vac) is analytic in the g.-image of the tube
domain (2.6). In particular, it will admit a Taylor expansion in z, convergent
in a neighbourhood of z = 0.

Proposition 2.1. The vector valued function ¢(z)|vac) is analytic in the image
T4 of T+ under the map g. (2.4):

Ty ={z€Ec:|2% <1, 2z2<1+|[2}. (2.7)

The closure M of the precompact image of the real Minkowski space M in Ec
has, in accord with (2.4), the form

M={z=e""u; teR, ueR* v*=u’+uj=1}. (2.8)

The mazimal compact subgroup S(U(2) x U(2)) of SU(2,2) acts on z = (z4)
by euclidean rotations of Spin(4) ~ SU(2) x SU(2) and by multiplication with a

1Vladimir Glaser was also aware of this fact (private communication to the author of 1962).



U(1) phase factor. Thus, it leaves the origin, z = 0, invariant. Noting further
the transitivity of the action of SU(2,2) on Ty we conclude that the (forward)
tube is a quotient of the conformal group by its maximal compact subgroup:

SU(2,2)

B = 5w 0@)

(See Proposition 4.2 and Eq. (4.31) of [NT].)

The complex conjugation x + iy — x — iy in M¢ interchanges the forward
and backward tubes 74. It corresponds to the involution

2= 2=, Ti =T, (2.9)

RN

which leaves compactified Minkowski space M pointwise invariant.

Since g, is a (complex) conformal transformation, in a conformal field theory
the z- and the z-space correlation function will have the same expression. In
particular, for a massless scalar field ¢(x) (of scale dimension 1) the correspond-
ing z-picture field ¢(z) = % ©(g¢(2)) will have 2-point function

(B(21) Blealo =, 212 =21 — 22 (2.10)
12

holomorphic for 2%, # 0 (including the backward tube 215 € T_).

3 Conformal vertex operators and massless fields

The preceding discussion (Sect. 2) reflected (and updated) author’s work of the
mid 1980’s [T86]. Shortly afterwards Borcherds developed his elegant approach
to 2-dimensional (chiral) vertex algebra [B]. Nearly two decades later Nikolov
extended it [N] (on the basis of [T86, NT01]) to higher dimensions. Here are
some highlights of the resulting theory. (For a more detailed but still concise
review see Sect. 4.3 of [NT].)

The state space of the theory is a (pre-Hilbert) inner product space V carry-
ing a (reducible) vacuum representation of the conformal group SU(2,2) such
that:

(a) The spectrum of the conformal Hamiltonian H belongs to {0, %, 1, %, .. }
and has a finite degeneracy:

V= P V.. H-p)V,=0, dimV, <oc. (3.1)

p=0,1,1,...

Each V, carries a fully reducible representation of Spin (4) = SU(2) x SU(2).
The central element —1 of Spin (4) is represented by the parity (—1)%” on V,.



(b) The lowest energy subspace V) is 1-dimensional and is spanned by the (nor-
malized) vacuum vector |vac) which is invariant under the full conformal group
SU(2,2).

The following proposition is a 4-dimensional counterpart of the state-field
correspondence of 2D CFT (see Proposition 4.3 (c¢) of [NT]):

Proposition 3.1. To every vector v € V (of fized parity (—1)?F) there corre-
sponds a unique local (Bose/Fermi for parity +/ — 1) field Y (v, z) such that

Y (v,0)|vac) = v, [H,Y(v,2)] = 2 % Y(v,2) + Y (Hv,z2)

[To,Y (v,2)] = 8% Y(v,2), a=1,2,3,4, (3.2)
where Ty, are the z,-translation generators in the complexification SL(4,C) of
SU(2,2). If v is a minimal energy state in an irreducible representation of
SU(2,2) then v is annihilated by the special conformal generators C, of the
complezified conformal Lie algebra (since [H,Co] = —Cy); such v are called
quasiprimary.

A prominent example of a quasiprimary state is the Fock vacuum |0) — the
lowest energy state of the massless scalar field ¢(z) of 2-point function (2.10)

#(0)|vac) = 10) (=11,0,0) —ie., (H —1)|1,0,0) = 0 = spin(4)|1,0,0)). (3.3)

Note that the field vacuum |vac) is U(2, 2) invariant —i.e., it is annihilated by the
full Lie algebra «(2,2), while the Fock vacuum |0) (defined by a |0) = 0 = b|0)
(1.9)) is only annihilated by the lowering operators F; and by the generators
Ey, Es, Hy, Hs of su(2) @ su(2). In the notation of Proposition 3.1 we can set
¢(2) = Y(|0), 2)-

The statement that ¢(z)|vac) is an analytic vector valued function for z in the
image T}y (2.7) of the forward tube is not obvious. In fact, the conjugation z —
¥ = z%’ which leaves invariant the closure M of Minkowski space, transforms,
according to (2.9), Ty into T_. The hermitian on M field has a non-trivial law
under conjugation for z € T :

* 1 * * d72
o = o) (s @)= ) (3.4)
so that the norm square of ¢(z)|vac), is finite in T (2.7):
0 o) = (vaclo(z)" ple)lvac) = ——5——— < oo
for 222 <14 22%%. (3.5)

1—ix0"

Remark 3.1. Note that for € =0 (= z) z4 = LEizs . if the image of 20 = i is
= —1, z4 is infinite, so that the map

24 = 0, for the complex conjugate point z°



from the ket Fock vacuum |0) = ¢(0)|vac) to its bra counterpart (0| is rather
non trivial. The transformation law (3.3) is related to a complex conformal
inversion.

Proposition 3.2. The vertex operator Y (|0),z) can be expressed in terms of
the annihilation and creation operators a™) and b*) (1.10) as:

1
(6() =) Y([0), 2) = U* exp(a’q 2 b*) exp (w) voi=4. @)
where ¢ = (q,q4) are the quaternion units:
qj:_laj (: _q;>7 j:17273a q4 = 0p (Z 12ZQZ)7 (37)

Ulvac) = [0) (= ¢(0)|vac)), (vac|U* = (0|, UU* = 1. (3.8)

The complez translation generators T, of (3.2), given by
4
T, = a*qa b, satisfy T? := Z T2 =0. (3.9)
a=1

The eigenspace H,, of the conformal Hamiltonian H (1.17) corresponding to
eigenvalue n(= 1,2, ...) is n®-dimensional and consists of all homogeneous har-
monic polynomials of degree n — 1.

The proof is based on direct computations verifying that the 2-point func-
tion (2.10) is reproduced by the vacuum expectation value of the product
Y (]0),21) Y(]0), 22). The isotropy of the 4-vector T, (3.9) follows from the
identity

4
P e e L (e T ) I G R 1))
a=1

It implies, in turn, the harmonicity of the homogeneous polynomials (7z)*
(Tz = T, 24). In view of the manifest SO(4) invariance of both the 2-point
function and the operator Y'(|0), z) (3.6), it is enough to reproduce (2.10) for
z1 = (0,1), i.e. to verify the expansion in spherical harmonics

(1 — 224 + 2371 :th(z4,z2) (22 =22 + 224+ 22) (3.11)
k=0

for

ha (2, 2%) = (k% (0|(ba)* (a*q = b*)*|0) :

h():l, h1:224, h2:3zi—z2, h3:4zi—424z2,

10



he = (k1) 2k — (’“ : 1) k2,2 40 (k . 1) A1 (222

-2 (k ? 1) M Ca M (3.12)

The space Hr4+1 of homogeneous harmonic polynomials of degree k span the

representation space (%, %) of Spin (4) = SU(2) x SU(2) of dimension (k -+ 1)2.

Remark 3.2. The n?-dimensional eigenspace H,, of H is isomorphic to the

stationary bound-state space of the non-relativistic hydrogen atom of energy
2

E, = -2 (where m = m"l"‘ﬁifp is the reduced mass of the electron-proton

system, o ~ €2 is the fine structure constant).

mo

The fact that the same structure — a UPEIR of the conformal group — ap-
pears in two seemingly unrelated problems: a relativistic massless quantum field
theory and the description of the bound states of the non-relativistic hydrogen
atom — i.e. the quantum mechanical Kepler problem — should make us stop and
think. An attempt to uncover the underlying general structure (an euclidean
Jordan algebra?!) is being made by Guowu Meng — see [M13] and references
therein.

4 Partition function, modular form, Planck’s
black-body radiation formula

Knowing the spectrum of the conformal Hamiltonian H (1.17) on the Fock space
Fo of a scalar massless field, we can write down its partition function

Z(r) =trr, ¢, ¢=¢e*", Im7 > 0. (4.1)

With our normalization both 7 and H are dimensionless. To display their
physical meaning we should set

hv
21 = — 4.2
mlm7 = =, (4.2)
thus including the energy unit i v and the absolute temperature T' (multiplied
by the Boltzmann constant k) in the definition of 7. Recalling that each energy
level for a Bose particle gives rise to a geometric progression and inserting the
energy eigenvalues and their multiplicities we find
b 2
Z(r)=[[a-gH™. (4.3)
n=1
The energy meanvalue in a thermal state characterized by the parameter ¢ (4.1)
(related to the temperature by (4.2)) is given by the logarithmic derivative of
the partition function:

(H), = + tx(Hq") =

d
7 InZ(r). (4.4)

Tdq

11



Remarkably, for a special choice of the zero-point energy,

1 1 1

E0:*§B4:§C(*3):%

(where By, are the Bernoulli numbers and ((1—2k) = — 3 By, are special rational
values of the analytically continued Riemann {-function), (H), coincides with
the unique modular form of weight 4:

(4.5)

1 = ndgn
H+ By, = =—-B . 4.
(H + Eo)g = Ga(r) = —¢ 4+n§;11_qn (4.6)
More generally,
BQk 0 n2k 1 q
G =—— 4.7
k(1) = =7 +; g (4.7)
satisfy, for k = 2,3, ..., the modular covariance condition
1 at +b a b
G =G f SL(2,7). 4.8
()~ for (0 ))esien. a9

For k = 2,3,4,5 the function Gy, satisfying the covariance condition (4.8) (or
equivalently, such that the k-differential Gor(7)(d7)¥ is modular invariant) is
unique up to an overall normalization — for a review of modular forms by a
great master of the field — see [Z]; for a summary — see [NT], Sect. 3.

Apart from its mathematical appeal Eq. (4.6) has a direct — and important
— physical meaning: it reproduces the Planck law for the black-body radiation.
We shall summarize in what follows the discussion of [NT05] and of Sect. 7 of
[NT].

In order to make contact with reality we shall substitute the unit sphere in
the definition (2.4) (or (2.8)) of M by a sphere of radius R (“the radius of the
universe”, R > 1). If we also perform a uniform dilation  — 5%, 2 — Rz(z, R),
Py — RPy + ﬁKg we find

-0 2 0
_ @ 2038 (E) g 2
2w, R) = o~ &) - za(x, R) - R = PR ERE ( ) i 'R
_ H(2R) 1
Hp = === = Po+ 115 Ko (4.9)

It was observed over 40 years ago by Irving Segal that the universal cover of
M, the Einstein universe M = R x S3, which admits a global causal structure is
locally undistinguishible from M for large R (see for a concise exposé [S82]). In
particular, the Minkowski energy operator Py is well approximated, according
to (4.9) by the conformal energy Hg. In order to compare with the familiar
expression for the black body radiation we restore the dimensional constants h
and ¢ setting Hr = % H(2R) - instead of (4.8) — with the result:

hc thef he S nle 1
o —Ey | = = E _— = —. 4.1
Hr)a =3 <G4( R ) °> R g =gy (410)

n:llie

12



Each term in the infinite sum in the right hand side is a constant multiple of
Planck’s black body radiation formula for frequency

v=n-—. (4.11)

Thus for a finite R there is a minimal positive frequency vg = 4.

The expansion (4.10) allows to derive in the limit R — oo the Stefan-
Boltzmann’s law:

Gy (522) — s
En(B) = 4(27TR) 240 2 (kT)*

. 4.12
RZ/R R—o00 30 h3c3 ( )

It also follows from the analysis of [NT05, NT] that the thermal correlation
functions are (doubly periodic) elliptic functions of periods R/c and i8 (due to
the Kubo-Martin-Schwinger boundary condition) [NT05].

The author thanks ITHES for hospitality in December 2018 when this paper
was written. His work was supported in part by contract DN-18/1 with the
Bulgarian National Science Fund.

A The ladder representation of u(2,2) C sp(8,R)

The aim of this Appendix is to give an elementary self contained exposition of
the main result of [MT] sketched in Sect. 1 above and in Sect. 3 of [T10].

It is convenient to use two realizations of the y-matrices of Cl1(4,1): the Dirac
picture with diagonal 3 = i~° and the chiral picture with diagonal chirality ~s:

1 0 0 0
D _ g=|0 1 0 0 D_ 1 DgD _ D D.D _ +o1
5 =03Qll = 00 —1 0 » Vs =01® :>/75/6 =7 Y2 73 =c®
00 0 -1
. - 0 -1
c=1io09, C —c—<1 0), (A.1D)

B =0 0l(=7), 15" =03®T, 75" M =155 " = c@ 1. (A.1Ch)
They are related by a simple involutive similarity transformation:

VP =VyV, VE=1(trV =0) =" =V V.

1
V=—s(ito)ol— VAT = —y PP (A.2)

13



A realization of v;, j =1, 2,3 which obeys (A.1) and (A.2) is given by

O j ; n
%Ch:f?@)qu(_q_ %J>, qg:—wj=>%D=—%'Cl (A.3)
J

(g; being the quaternion units ¢1¢2q3 = —1 = qj2)

The second quantized operators X will be independent of the choice of basis
if we transform simultaneously ¢, @:

goD = V@Ch & goCh = Vng & gED = @ChV. (A.4)

In accord with (1.6) (1.7) and (A.1) we shall set
¢D=<;)@¢D:mﬂ4maﬂm:o:%m%a:1@. (A.5)
The CCR (1.4) then imply

[0 @] = 8o = [bas U], [al), 0571 = 0. (A.6)

The normal product

h:=: @p := pp — (0] gy |0) (A.7)
generates the centre u(1) of u(2,2) and will be identified with twice the helicity
operator. Its spectrum is Z — the set of all integers.

The entire construction works for the Lie algebra u(n,n) C sp(4n) of rank
2n; Egs. (A.5) (A.6) may be extended to o, 5 = 1,...,n. In general, one can
introduce the Chevalley-Cartan basis of sli(2n,C) D su(n,n):

Ei=0;¢"", Fi=0i1¢", Hi=[E,F] =i ¢' — Gip1 9",
i=1,....2n—1. (A.8)

For 8 = 03 ® T, (which generalizes (A.1D)) one can define two Fock space rep-
resentations — one with vacuum defined by (1.7) and another with the opposite
convention

Eypl04) = 0=E_3|04), B_p[0-) =0=E, 3[0-),

Ei=1(1xp). (A.9)

The representation (h,+) with fixed eigenvalue h of the invariant : g : (A.7)
and vacuum vector |0+) is a UPEIR with a lowest weight vector

Ny @l j0+) for h>0
|h+) = (A.10)
Ny Jo4+) for  h <0, Ny = (|n[t)"1/2

satisfying, by definition,
Filh+)=0,i=1,....,2n—1, (Hy—1)|h+) =0 (A.11)
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where Hg = Hy + ...+ Ha,—1 is the highest root. The representation (h,—)
with Fock vacuum |0—) is a negative energy unitary irreducible representation
with highest weight vector

Niowljo=)  for h<0
|h—) = (A.12)
N1 @t [0=) for h>0

such that
E;lh—)=0,i=1,....,2n—1, (Hp+1)|h—)=0. (A.13)

The generator of the centre u(1) of the maximal compact subalgebra s(u(n)®
u(n)) of su(n,n) is given by

HC = H1 +2H2 +... +1’LHn + (’I’L— 1)Hn+1 + ... +H2n,1 . (A14)
It is positive definite on (h,+), negative definite on (h, —) and satisfies
(He —€(|h] +n)) |h,e) =0 for e==+. (A.15)

For the case of interest, n = 2, and € = + we define the conformal Hamiltonian
by (1.17):

H=1H. =1(a"a+bb*) sothat H|0)=10) (=[0+)). (A.16)

In order to recover the (Poincaré) energy-momentum we shall pass to the
chiral representation (A.1Ch) of the Dirac algebra and set

= 0

@Ch: A a&Ch:(_ay)\)7A:(A13A2)76A:77A:152' (A17)
) O

A straightforward calculation then gives:

&'YHH-&-@:Z'Z)/L; Pu :>\Uu>\ (Hi = %(13&75))- (A'18)

The mass-shell condition p? = 0 (and Eq. (1.10)) then follow from the
identity

O'()AB 06413/ — gAB gA'B! _ 9 AN BB (A.19)
Egs. (A.2) (A.4) imply the relations
L 3+0), b= 00 +9)
a4 = —= ) = = )
V2 2
1 = 1

a*=—=AN-0), b'=—=(A-0). A20
\/5( ) ﬂ( ) (A.20)

The lowest energy state (the zero helicity Fock vacuum) is given by
2 \x 2\? f
0)=Ze ™ =(0]0):= (> // e PPN dP Ay = 1. (A.21)
T T
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The central element H. = Hy + 2Hy + Hs (cf. (A.14)) assumes the form
H.=M\-090= (H.—2)|0) =0, (A.22)

so that the spectrum of the conformal Hamiltonian H = %HC in the posi-
tive energy Fock space of the Heisenberg algebra of creation and annihilation
operators coincides with the set {1, %, 2, g, .. } The degeneracy of each eigen-
value of H is determined by the corresponding representation of the spin group
Spin(4) = SU(2) x SU(2) generated by the vectors J; = 1 a*oa, J, = L bo b*
of spectrum J? = j;(j; + 1), i = 1,2, j; = 0, %, .... In particular, the spectrum
of H in the zero helicity Fock space coincides with the set of positive integers
and the degeneracy of the eigenvalue n(= 2j + 1) is n2.
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