Playful Constructions in Double Copy Predictions

Established by the European Commission

Who we currently connect to:

Stories

Perturbative Quantum stories from Actions?

Use Feynman rules.

Consider Einstein-Hilbert Action:

Who could complain about this?

Off-shell three-graviton vertex (de Donder/harmonic gauge):

 δS^3

 $- \qquad \rightarrow \qquad 2\eta^{\mu\tau}\eta^{\nu\sigma}k_1^{\ \lambda}k_1^{\ \rho} \ + \ 2\eta^{\mu\sigma}\eta^{\nu\tau}k_1^{\ \lambda}k_1^{\ \rho} \ - \ 2\eta^{\mu\nu}\eta^{\sigma\tau}k_1^{\ \lambda}k_1^{\ \rho} \ + \ 2\eta^{\mu\sigma}\eta^{\nu\tau}k_1^{\ \lambda}k_1^{\ \rho} \ - \ 2\eta^{\mu\nu}\eta^{\sigma\tau}k_1^{\ \lambda}k_1^{\ \rho} \ + \ 2\eta^{\mu\sigma}k_1^{\ \lambda}k_1^{\ \rho} \ + \ 2\eta^{\mu\sigma}k_1^{\ \lambda}k_1^{\ \rho} \ - \ 2\eta^{\mu\nu}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \rho} \ + \ 2\eta^{\mu\sigma}k_1^{\ \lambda}k_1^{\ \rho} \ + \ 2\eta^{\mu\sigma}k_1^{\ \lambda}k_1^{\ \rho} \ - \ 2\eta^{\mu\nu}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \rho} \ + \ 2\eta^{\mu\sigma}k_1^{\ \lambda}k_1^{\ \mu} \ - \ 2\eta^{\mu\nu}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \rho} \ + \ 2\eta^{\mu\sigma}k_1^{\ \lambda}k_1^{\ \mu} \ - \ 2\eta^{\mu\nu}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \mu} \ + \ 2\eta^{\mu\sigma}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \mu} \ + \ 2\eta^{\mu\sigma}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \mu} \ - \ 2\eta^{\mu\nu}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \mu} \ + \ 2\eta^{\mu\nu}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \mu} \ - \ 2\eta^{\mu\nu}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \mu} \ + \ 2\eta^{\mu\nu}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \mu} \ - \ 2\eta^{\mu\nu}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \mu} \ + \ 2\eta^{\mu\nu}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \lambda}k_1^{\ \mu} \ + \ 2\eta^{\mu\nu}k_1^{\ \lambda}k_1^{\ \lambda}k_1$

 $\delta \varphi_{\mu\nu} \delta \varphi_{\sigma\tau} \delta \varphi_{\rho\lambda}$ $2\eta^{\lambda\tau}\eta^{\mu\nu}k_{1}{}^{\sigma}k_{1}{}^{\rho} + 2\eta^{\lambda\sigma}\eta^{\mu\nu}k_{1}{}^{\tau}k_{1}{}^{\rho} + \eta^{\mu\tau}\eta^{\nu\sigma}k_{2}{}^{\lambda}k_{1}{}^{\rho} + \eta^{\mu\sigma}\eta^{\nu\tau}k_{2}{}^{\lambda}k_{1}{}^{\rho} + \eta^{\lambda\tau}\eta^{\nu\sigma}k_{2}{}^{\mu}k_{1}{}^{\rho} +$ $\eta^{\lambda\sigma}\eta^{\nu\tau}k_{2}^{\ \mu}k_{1}^{\ \rho} + \eta^{\lambda\tau}\eta^{\mu\sigma}k_{2}^{\ \nu}k_{1}^{\ \rho} + \eta^{\lambda\sigma}\eta^{\mu\tau}k_{2}^{\ \nu}k_{1}^{\ \rho} + \eta^{\lambda\tau}\eta^{\nu\sigma}k_{3}^{\ \mu}k_{1}^{\ \rho} + \eta^{\lambda\sigma}\eta^{\nu\tau}k_{3}^{\ \mu}k_{1}^{\ \rho} \eta^{\lambda\nu}_{,\nu}\eta^{\sigma\tau}k_{3}^{\mu}k_{1}^{\rho} + \eta^{\lambda\tau}_{,\nu}\eta^{\mu\sigma}k_{3}^{\nu}k_{1}^{\rho} + \eta^{\lambda\sigma}\eta^{\mu\tau}k_{3}^{\nu}k_{1}^{\rho} - \eta^{\lambda\mu}\eta^{\sigma\tau}k_{3}^{\nu}k_{1}^{\rho} + \eta^{\lambda\nu}\eta^{\mu\tau}k_{3}^{\nu}k_{1}^{\rho}$ $\sigma_{k_1}{}^{\rho} +$ $\eta^{\lambda\mu}\eta^{\nu\tau}k_{3}{}^{\sigma}k_{1}{}^{\rho} + \eta^{\lambda\nu}\eta^{\mu\sigma}k_{3}{}^{\tau}k_{1}{}^{\rho} + \eta^{\lambda\mu}\eta^{\nu\sigma}k_{3}{}^{\tau}k_{1}{}^{\rho} + 2\eta^{\mu\nu}\eta^{\rho\tau}k_{1}{}^{\lambda}k_{1}{}^{\sigma} + 2\eta^{\mu\nu}\eta^{\rho\sigma}k_{1}{}^{\lambda}k_{1}{}^{\tau} \eta^{\mu\sigma}\eta^{\nu\rho}k_1^{\ \tau}k_2^{\ \lambda} + \eta^{\mu\rho}\eta^{\nu\sigma}k_1^{\ \tau}k_2^{\ \lambda} + \eta^{\nu\tau}\eta^{\rho\sigma}k_1^{\ \lambda}k_2^{\ \mu} + \eta^{\nu\sigma}\eta^{\rho\tau}k_1^{\ \lambda}k_2^{\ \mu} + \eta^{\lambda\tau}\eta^{\nu\rho}k_1$ $\sigma_{k_2}^{\mu}$ – $\eta^{\lambda\rho}\eta^{\nu\tau}k_{1}^{\ \sigma}k_{2}^{\ \mu} + \eta^{\lambda\nu}\eta^{\rho\tau}k_{1}^{\ \sigma}k_{2}^{\ \mu} + \eta^{\lambda\sigma}\eta^{\nu\rho}k_{1}^{\ \tau}k_{2}^{\ \mu} - \eta^{\lambda\rho}\eta^{\nu\sigma}k_{1}^{\ \tau}k_{2}^{\ \mu} + \eta^{\lambda\nu}\eta^{\rho\sigma}k_{1}^{\ \tau}k_{2}^{\ \mu} + \eta^{\lambda}\mu^{\mu}k_{1}^{\ \mu}k_{2}^{\ \mu} + \eta^{\lambda}\mu^{\mu}k_{1}^{\ \mu}k_{2}^{\ \mu}k_{2}^{\ \mu} + \eta^{\lambda}\mu^{\mu}$ $2\eta^{\nu\rho}\eta^{\sigma\tau}k_{2}^{\lambda}k_{2}^{\mu} + \eta^{\mu\tau}\eta^{\rho\sigma}k_{1}^{\lambda}k_{2}^{\nu} + \eta^{\mu\sigma}\eta^{\rho\tau}k_{1}^{\lambda}k_{2}^{\nu} + \eta^{\lambda\tau}\eta^{\mu\rho}k_{1}^{\sigma}k_{2}^{\nu} - \eta^{\lambda\rho}\eta^{\mu\tau}k_{1}^{\nu}$ $\eta^{\lambda\mu}\eta^{\rho\tau}{k_1}^{\sigma}{k_2}^{\nu} + \eta^{\lambda\sigma}\eta^{\mu\rho}{k_1}^{\tau}{k_2}^{\nu} - \eta^{\lambda\rho}\eta^{\mu\sigma}{k_1}^{\tau}{k_2}^{\nu} + \eta^{\lambda\mu}\eta^{\rho\sigma}{k_1}^{\tau}{k_2}^{\nu} + 2\eta^{\mu\rho}\eta^{\sigma\tau}{k_2}^{\lambda}{k_2}^{\nu} +$ $2\eta^{\lambda\tau}\eta^{\rho\sigma}k_{2}^{\mu}k_{2}^{\nu} + 2\eta^{\lambda\sigma}\eta^{\rho\tau}k_{2}^{\mu}k_{2}^{\nu} - 2\eta^{\lambda\rho}\eta^{\sigma\tau}k_{2}^{\mu}k_{2}^{\nu} + \eta^{\mu\tau}\eta^{\nu\sigma}k_{1}^{\lambda}k_{2}^{\rho} + \eta^{\mu\sigma}\eta^{\nu\tau}k_{1}^{\lambda}k_{2}^{\rho} +$ $\eta^{\lambda\nu}\eta^{\mu\tau}k_{1}{}^{\sigma}k_{2}{}^{\rho} + \eta^{\lambda\mu}\eta^{\nu\tau}k_{1}{}^{\sigma}k_{2}{}^{\rho} + \eta^{\lambda\nu}\eta^{\mu\sigma}k_{1}{}^{\tau}k_{2}{}^{\rho} + \eta^{\lambda\mu}\eta^{\nu\sigma}k_{1}{}^{\tau}k_{2}{}^{\rho} + 2\eta^{\mu\tau}\eta^{\nu\sigma}k_{2}{}^{\lambda}k_{2}{}^{\rho} +$ $2\eta^{\mu\sigma}\eta^{\nu\tau}k_{2}^{\ \lambda}k_{2}^{\ \rho} - 2\eta^{\mu\nu}\eta^{\sigma\tau}k_{2}^{\ \lambda}k_{2}^{\ \rho} + 2\eta^{\lambda\nu}\eta^{\sigma\tau}k_{2}^{\ \mu}k_{2}^{\ \rho} + 2\eta^{\lambda\mu}\eta^{\sigma\tau}k_{2}^{\ \nu}k_{2}^{\ \rho} + \eta^{\nu\tau}\eta^{\rho\sigma}k_{1}^{\ \lambda}k_{3}^{\ \mu} +$ $\eta^{\nu\sigma}\eta^{\rho\tau}k_1\bar{\lambda}_{k_3}\bar{\mu} - \eta^{\nu\rho}\eta^{\sigma\tau}k_1\bar{\lambda}_{k_3}\bar{\mu} + \eta^{\lambda\tau}\eta^{\nu\rho}k_1\bar{\sigma}_{k_3}\bar{\mu} + \eta^{\lambda\nu}\eta^{\rho\tau}k_1^{\sigma}k_3^{\mu} + \eta^{\lambda\sigma}\eta^{\nu\rho}k_1^{\tau}k_3^{\mu} + \eta^{\lambda\sigma}\eta^{\nu\rho}k_1^{\tau}k_3^{\mu}k_1^{\tau} + \eta^{\lambda\sigma}\mu^{\mu}k_1^{\tau}k_3^{\mu}k_1^{\tau} + \eta^{\lambda\sigma}\mu^{\mu}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^{\tau}k_1^$ $\eta^{\lambda\nu}\eta^{\rho\sigma}k_1^{\ \tau}k_3^{\ \mu} + \eta^{\nu\tau}\eta^{\rho\sigma}k_2^{\ \lambda}k_3^{\ \mu} + \eta^{\nu\sigma}\eta^{\rho\tau}k_2^{\ \lambda}k_3^{\ \mu} + \eta^{\lambda\tau}\eta^{\rho\sigma}k_2^{\ \nu}k_3^{\ \mu} + \eta^{\lambda\sigma}\eta^{\rho\tau}k_2$ $e^{\nu}k_{3}^{\mu} +$ $\eta^{\lambda\tau}\eta^{\nu\sigma}k_{2}^{\rho}k_{3}^{\mu} + \eta^{\lambda\sigma}\eta^{\nu\tau}k_{2}^{\rho}k_{3}^{\mu} + \eta^{\mu\tau}\eta^{\rho\sigma}k_{1}^{\lambda}k_{3}^{\nu} + \eta^{\mu\sigma}\eta^{\rho\tau}k_{1}^{\lambda}k_{3}^{\nu} - \eta^{\mu\rho}\eta^{\sigma\tau}k_{1}^{\lambda}k_{3}^{\nu}$ $\eta^{\lambda\tau}\eta^{\mu\rho}k_1$ $\begin{bmatrix} \sigma k_{3}^{\nu} + \eta^{\lambda \mu} \eta^{\rho \tau} k_{1}^{\sigma} k_{3}^{\nu} + \eta^{\lambda \sigma} \eta^{\mu \rho} k_{1}^{\tau} k_{3}^{\nu} + \eta^{\lambda \mu} \eta^{\rho \sigma} k_{1}^{\tau} k_{3}^{\nu} + \eta^{\mu \tau} \eta^{\rho \sigma} k_{2} \end{bmatrix}$ λ_{k_3} $\eta^{\mu\sigma}\eta^{\rho\tau}k_{2}^{\lambda}k_{3}^{\nu} + \eta^{\lambda\tau}\eta^{\rho\sigma}k_{2}^{\mu}k_{3}^{\nu} + \eta^{\lambda\sigma}\eta^{\rho\tau}k_{2}^{\mu}k_{3}^{\nu} + \eta^{\lambda\tau}\eta^{\mu\sigma}k_{2}^{\rho}k_{3}^{\nu} + \eta^{\lambda\sigma}\eta^{\mu\tau}k_{2}^{\rho}k_{3}^{\nu}$ $2\eta^{\lambda\tau}\eta^{\rho\sigma}k_{3}^{\mu}k_{3}^{\nu} + 2\eta^{\lambda\sigma}\eta^{\rho\tau}k_{3}^{\mu}k_{3}^{\nu} - 2\eta^{\lambda\rho}\eta^{\sigma\tau}k_{3}^{\mu}k_{3}^{\nu} + \eta^{\mu\tau}\eta^{\nu\rho}k_{1}^{\lambda}k_{3}^{\sigma} + \eta^{\mu\rho}\eta^{\nu\tau}k_{1}^{\lambda}k_{3}^{\sigma}$ $\eta^{\lambda\nu}\eta^{\mu\rho}k_1^{\ \tau}k_3^{\ \sigma} + \eta^{\lambda\mu}\eta^{\nu\rho}k_1^{\ \tau}k_3^{\ \sigma} + \eta^{\mu\tau}\eta^{\nu\rho}k_2^{\ \lambda}k_3^{\ \sigma} + \eta^{\mu\rho}\eta^{\nu\tau}k_2^{\ \lambda}k_3^{\ \sigma} - \eta^{\mu\nu}\eta^{\rho\tau}k_2^{\ \tau}k_3^{\ \sigma}$ λ_{k_3} $\eta^{\lambda\tau} \eta^{\nu\rho} k_{2}{}^{\mu} k_{3}{}^{\sigma} + \eta^{\lambda\nu} \eta^{\rho\tau} k_{2}{}^{\mu} k_{3}{}^{\sigma} + \eta^{\lambda\tau} \eta^{\mu\rho} k_{2}{}^{\nu} k_{3}{}^{\sigma} + \eta^{\lambda\mu} \eta^{\rho\tau} k_{2}{}^{\nu} k_{3}{}^{\sigma} - \eta^{\lambda\tau} \eta^{\mu\nu} k_{2}{}^{\rho} k_{3}{}^{\rho}$ λ_{k_3} $\eta^{\lambda\nu}\eta^{\mu\tau}k_{2}^{\rho}k_{3}^{\sigma} + \eta^{\lambda\mu}\eta^{\nu\tau}k_{2}^{\rho}k_{3}^{\sigma} + 2\eta^{\lambda\rho}\eta^{\nu\tau}k_{3}^{\mu}k_{3}^{\sigma} + 2\eta^{\lambda\rho}\eta^{\mu\tau}k_{3}^{\nu}k_{3}^{\sigma} + \eta^{\mu\sigma}\eta^{\nu\rho}k_{1}^{\nu}$ $\eta^{\mu\rho}\eta^{\nu\sigma}k_1^{\lambda}k_3^{\tau} + \eta^{\lambda\nu}\eta^{\mu\rho}k_1^{\sigma}k_3^{\tau} + \eta^{\lambda\mu}\eta^{\nu\rho}k_1^{\sigma}k_3^{\tau} + \eta^{\mu\sigma}\eta^{\nu\rho}k_2^{\lambda}k_3^{\tau} + \eta^{\mu\rho}\eta^{\nu\sigma}k_2$ $\gamma^{\rho\sigma}k_2^{\lambda}k_3^{\tau} + \eta^{\lambda\sigma}\eta^{\nu\rho}k_2^{\mu}k_3^{\tau} + \eta^{\lambda\nu}\eta^{\rho\sigma}k_2^{\mu}k_3^{\tau} + \eta^{\lambda\sigma}\eta^{\mu\rho}k_2^{\nu}k_3^{\tau} + \eta^{\lambda\mu}\eta^{\rho\sigma}k_2$ $\lambda^{\sigma}\eta^{\mu\nu}k_{2}^{\ \rho}k_{3}^{\ \tau} + \eta^{\lambda\nu}\eta^{\mu\sigma}k_{2}^{\ \rho}k_{3}^{\ \tau} + \eta^{\lambda\mu}\eta^{\nu\sigma}k_{2}^{\ \rho}k_{3}^{\ \tau} + 2\eta^{\lambda\rho}\eta^{\nu\sigma}k_{3}^{\ \mu}k_{3}^{\ \tau} + 2\eta^{\lambda\rho}\eta^{\mu\sigma}k_{3}^{\ \nu}$ $2\eta^{\lambda\rho}\eta^{\mu\nu}k_{3}^{\sigma}k_{3}^{\tau} + 2\eta^{\lambda\nu}\eta^{\mu\rho}k_{3}^{\sigma}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\tau} - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_{1} \cdot k_{2} - \eta^{\lambda\sigma}\eta^{\mu\tau}\eta^{\nu\rho}k_{1} \cdot k_{3}^{\sigma}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\sigma}k_{3}^{\tau} - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_{1} \cdot k_{2}^{\sigma} - \eta^{\lambda\sigma}\eta^{\mu\tau}\eta^{\nu\rho}k_{1} \cdot k_{3}^{\sigma}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\sigma}k_{3}^{\tau} - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_{1} \cdot k_{2}^{\sigma} - \eta^{\lambda\sigma}\eta^{\mu\tau}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\sigma}k_{3}^{\tau} - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_{1} \cdot k_{2}^{\sigma} - \eta^{\lambda\sigma}\eta^{\mu\tau}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\sigma}k_{3}^{\tau} - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\sigma}k_{3}^{\tau} - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\sigma}k_{3}^{\tau} - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\tau} - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\tau} - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\tau} - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu}k_{3}^{\tau} + 2\eta^{\lambda\mu}\mu^{\nu}k_{3}^{\tau} + 2\eta^{\lambda\mu}\mu^{\nu}k_{3$ $k_{2} - \eta^{\lambda\tau} \eta^{\mu\rho} \eta^{\nu\sigma} k_{1} \cdot k_{2} + \eta^{\lambda\rho} \eta^{\mu\tau} \eta^{\nu\sigma} k_{1} \cdot k_{2} - \eta^{\lambda\sigma} \eta^{\mu\rho} \eta^{\nu\tau} k_{1} \cdot k_{2} + \eta^{\lambda\rho} \eta^{\mu\sigma} \eta^{\mu\tau} \eta^{\mu\sigma} \eta^{\mu\tau} \eta^{\mu$ $2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\rho\sigma}k_{1} \cdot k_{2} - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\rho\sigma}k_{1} \cdot k_{2} - \eta^{\lambda\mu}\eta^{\nu\tau}\eta^{\rho\sigma}k_{1} \cdot k_{2} + 2\eta^{\lambda\sigma}\eta^{\mu\nu}\eta^{\rho\tau}k_{1} \cdot k_{2} - \eta^{\lambda\mu}\eta^{\mu\tau}\eta^{\rho\sigma}k_{1} \cdot k_{2} - \eta^{\lambda\mu}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\rho\sigma}k_{1} \cdot k_{2} - \eta^{\lambda\mu}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\rho\sigma}k_{1} \cdot k_{2} - \eta^{\lambda\mu}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu$ $2\eta^{\lambda\mu}\eta^{\nu\rho}\eta^{\sigma\tau}k_1 \cdot k_2 - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_1 \cdot k_3 - \eta^{\lambda\sigma}\eta^{\mu\tau}\eta^{\nu\rho}k_1 \cdot k_3 - \eta^{\lambda\tau}\eta^{\mu\rho}\eta^{\nu\sigma}k_1 \cdot k_3 +$ $2\eta^{\lambda\rho}\eta^{\mu\tau}\eta^{\nu\sigma}k_{1} \cdot k_{3} - \eta^{\lambda\sigma}\eta^{\mu\rho}\eta^{\nu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\rho}\eta^{\mu\sigma}\eta^{\nu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\rho\sigma}k_{1} \cdot k_{3} - \eta^{\mu\nu}\eta^{\mu\sigma}\eta^{\nu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} - \eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} - \eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} - \eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} - \eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} - \eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} - \eta^{\mu\nu}k_{1} \cdot k_{3} - \eta^{\mu}k_{1} \cdot$ $\eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\rho\sigma}k_1 \cdot k_3 - \eta^{\lambda\mu}\eta^{\nu\tau}\eta^{\rho\sigma}k_1 \cdot k_3 + 2\eta^{\lambda\sigma}\eta^{\mu\nu}\eta^{\rho\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\sigma}\eta^{\rho\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\sigma}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}k_1 \cdot k_3$ $\lambda^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_2 \cdot k_3 - \eta^{\lambda\sigma}\eta^{\mu\tau}\eta^{\nu\rho}k_2 \cdot k_3 - \eta^{\lambda\tau}\eta^{\mu\rho}\eta^{\nu\sigma}k_2 \cdot k_3 + 2\eta^{\lambda\rho}\eta^{\mu\tau}\eta^{\nu\sigma}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\nu}\eta^{\nu\sigma}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\nu}\eta^{\nu\nu}\eta^{\nu\sigma}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{\nu\nu}\eta^{$ $\eta^{\lambda\sigma}\eta^{\mu\rho}\eta^{\nu\tau}k_2 \cdot k_3 + 2\eta^{\lambda\rho}\eta^{\mu\sigma}\eta^{\nu\tau}k_2 \cdot k_3 + \eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\rho\sigma}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\rho\sigma}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\rho\sigma}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\rho\sigma}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{$ $\eta^{\lambda\mu}\eta^{\nu\tau}\eta^{\rho\sigma}k_2 \cdot k_3 + \eta^{\lambda\sigma}\eta^{\mu\nu}\eta^{\rho\tau}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\sigma}\eta^{\rho\tau}k_2 \cdot k_3 - \eta^{\lambda\mu}\eta^{\nu\sigma}\eta^{\rho\tau}k_2 \cdot k_3 - \eta^{\lambda\mu}\eta^{\nu\sigma}\eta^{\mu\tau}k_2 \cdot k_3 - \eta^{\lambda\mu}\eta^{\nu\tau}k_2 \cdot k_3 - \eta^{\lambda\mu}k_2 \cdot k_3 - \eta^{\lambda\mu}k_3 - \eta^{\lambda\mu}k_2$ $2\eta^{\lambda\rho}\eta^{\mu\nu}\eta^{\sigma\tau}k_2 \cdot k_3 + 2\eta^{\lambda\nu}\eta^{\mu\rho}\eta^{\sigma\tau}k_2 \cdot k_3 + 2\eta^{\lambda\mu}\eta^{\nu\rho}\eta^{\sigma\tau}k_2 \cdot k_3$

171 terms

[DeWitt, 1967]

MOST SYMMETRIC 4D THEORY, N=8 SUGRA

Some truths obscured by actions:

Calculate with physical (on-shell) quantities: $k_i^2 = 0$

Physical (on-shell) tree-level amplitudes contain all the information necessary to verify and build *all* loop-level amplitudes

Bern, Dixon, Dunbar, and Kosower ('94,'95)

Bern, Dixon, and **Kosower** ('96)

Physical (on-shell) three-vertices contain all the information necessaryto build all tree-level amplitudesBritto, Cachazo, Feng, and Witten ('05)

Easy verification => Natural construction. Method of maximal cuts.

Bern, JJMC, Johansson, Kosower ('07)

Ready to solve all of life's problems?

Complexity of Insisting on Local Representations

Five point I-loop (no triangles, no bubbles)

JJMC, Johansson

Five point 2-loop (no triangles, no bubbles)

Five point 3-loop (no bubbles, no triangles)

JJMC, Johansson (to appear)

the game of Scattering Amplitudes

the game of Scattering Amplitudes

Same predictions, but definitely different stories

NECESSARY

X

 $\chi + \cdots$

NECESSARY

SUFFICIENT

Bern, Dixon, Dunbar, and Kosower ('94,'95)

Bern, Dixon, and Kosower ('96)

Britto, Cachazo, and Feng ('04)

SPANNING CUTS

applied to 3-loop SUGRA: arXiv:0808.4112 Z. Bern, JJMC, L. Dixon, H. Johansson, D.

JULIEV, LE, VUIVVIIVUU

leads to notion of a Minimal Spanning Set

EASY VERIFICATION

applied to 3-loop SUGRA: arXiv:0808.4112 Z. Bern, JJMC, L. Dixon, H. Johansson, D. KoBeren, J. M. Gib Kosower, Johansson

(\forall exposed propagators $p^2 = 0$)

no cut conditions !)

Bern, JJMC, Dixon, Kosower, Johansson, Roiban '07

Original solution of three-loop four-point N=4 sYM and N=8 sugra

Integral	$\mathcal{N} = 4$ Yang-Mills	$\mathcal{N} = 8$ Supergravity		
(a)–(d)	s^2		$[s^2]^2$	
(e)-(g)	$s(l_1 + k_4)^2$		$[s(l_1+k_4)^2]^2$	
(h)	$s(l_1 + l_2)^2 + t(l_3 + l_4)^2$	$\frac{(s(l_1+l_2)^2+t(l_3+l_4)^2-st)^2-s^2(2((l_1+l_2)^2-t)+l_5^2)l_5^2}{(s(l_1+l_2)^2-t)+l_5^2)l_5^2}$		
	$-sl_5^2 - tl_6^2 - st$	$-t^{2}\left(2\left((l_{3}+l_{4})^{2}-s\right)+l_{6}^{2}\right)l_{6}^{2}-s^{2}\left(2l_{7}^{2}l_{2}^{2}+2l_{1}^{2}l_{9}^{2}+l_{2}^{2}l_{9}^{2}+l_{1}^{2}l_{7}^{2}\right)$		
		$-t^2(2l_3^2l_8^2+2l_{10}^2l_4^2+l_8^2l_4^2+l_3^2l_{10}^2)+2stl_5^2l_6^2$		
(i)	$s(l_1 + l_2)^2 - t(l_3 + l_4)^2$	$(s(l_1+l_2)^2 - t(l_3+l_4)^2)^2$		
	$-rac{1}{3}(s-t)l_{5}^{2}$	$-(s^2)$	$(l_1 + l_2)^2 + t^2(l_3 + l_4)^2 +$	$rac{1}{3}stu)l_5^2$

Bern, JJMC, Johansson (2010)

Cubic Double-Copy Solution

$s = (k_1 + k_2)^2$ $t = (k_1 + k_4)^2$ $u = (k_1 + k_3)^2$ $\tau_{i,j} = 2k_i$					
Integral $I^{(x)}$	$\mathcal{N} = 4$ Super-Yang-Mills ($\sqrt{\mathcal{N} = 8}$ supergravity) numerator				
(a)-(d)	s^2				
(e)–(g)	$(s(-\tau_{35}+\tau_{45}+t)-t(\tau_{25}+\tau_{45})+u(\tau_{25}+\tau_{35})-s^2)/3$				
(h)	$\left(s \left(2 au_{15} - au_{16} + 2 au_{26} - au_{27} + 2 au_{35} + au_{36} + au_{37} - u ight) ight)$				
	$+t\left(\tau_{16}+\tau_{26}-\tau_{37}+2\tau_{36}-2\tau_{15}-2\tau_{27}-2\tau_{35}-3\tau_{17}\right)+s^{2}\right)/3$				
(i)	$(s(-\tau_{25} - \tau_{26} - \tau_{35} + \tau_{36} + \tau_{45} + 2t)$				
	$+t\left(\tau_{26}+\tau_{35}+2\tau_{36}+2\tau_{45}+3\tau_{46}\right)+u\tau_{25}+s^2\right)/3$				
(j)-(l)	s(t-u)/3				

Color and Kinematics dance together.

Solving Yang-Mills theories means solving Gravity theories.

Bern, JJMC, Johansson ('08,'10)

Generic D-dimensional YM theories have a fascinating structure at tree-level

Tree level example that doesn't hurt the eyes...

Non-Linear sigma model...

$$\mathcal{L}_{\text{NLSM}} = \frac{1}{2} \text{Tr} \left\{ \partial_{\mu} \varphi \, \frac{1}{1 - \varphi^2} \, \partial^{\mu} \varphi \, \frac{1}{1 - \varphi^2} \right\}$$

(Cayley Parameterization)

Leading O(p^2) contribution to Chiral Lagrangian

niedrige Energie < 1 GeV

Non-Linear sigma model...

$$\mathcal{L}_{\text{NLSM}} = \frac{1}{2} \text{Tr} \left\{ \partial_{\mu} \varphi \, \frac{1}{1 - \varphi^2} \, \partial^{\mu} \varphi \, \frac{1}{1 - \varphi^2} \right\}$$

(Cayley Parameterization)

For SU(2)
$$f^{abc} \propto \epsilon^{abc}$$

 $C_s = f^{a_1 a_2 b} f^{b a_3 a_4} \propto \delta^{a_1, a_3} \delta^{a_2, a_4} - \delta^{a_1, a_4} \delta^{a_2, a_3}$

$$n_{s} \propto (k_{(1,2)}^{2} + k_{(3,4)}^{2}) \times (k_{[1,2]} \cdot k_{[3,4]})$$

$$k_{(ab)} = k_{a} + k_{b} \qquad k_{[ab]} = k_{a} - k_{b}$$

$$0 \stackrel{?}{=} n_s - n_u - n_t$$

$$\propto n_s - n_s|_{s \leftrightarrow u} - n_s|_{s \leftrightarrow t}$$

$$\propto s(u-t) - u(s-t) - t(u-s)$$

$$\propto su - st - us + ut - tu + ts = 0$$
Bern, JJMC, Johansson ('08,'10)

Generic D-dimensional YM theories have a fascinating structure at tree-level

YM: Color-Kinematic Duality, makes manifest gravitational double copy structure:

$$-iM_n^{\text{tree}} = \sum_{\mathcal{G}\in\text{cubic}} \frac{n(\mathcal{G})\tilde{n}(\mathcal{G})}{D(\mathcal{G})}$$

Valid multi-loop generalization?

$$\frac{(-i)^{L}}{g^{n-2+2L}}\mathcal{A}^{\text{loop}} = \sum_{\mathcal{G}\in\text{cubic}}\int \prod_{l=1}^{L} \frac{d^{D}p_{l}}{(2\pi)^{D}} \frac{1}{S(\mathcal{G})} \frac{n(\mathcal{G})c(\mathcal{G})}{D(\mathcal{G})}$$

CONJECTURE: for all graphs, can impose CK on every edge:

Consequence of unitarity: double copy structure holds.

$$\frac{(-i)^{L+1}}{(\kappa/2)^{n-2+2L}}\mathcal{M}^{\text{loop}} = \sum_{\mathcal{G}\in\text{cubic}}\int\prod_{l=1}^{L}\frac{d^{D}p_{l}}{(2\pi)^{D}}\frac{1}{S(\mathcal{G})}\frac{n(\mathcal{G})\tilde{n}(\mathcal{G})}{D(\mathcal{G})}$$

The scattering amplitudes of many relativistic theories admit a:

Double-copy Numerator Algebra

This points to previously hidden structure in many theories.

Structure yet to be generally understood at the level of the action.

Many theories are double copy!

Key Point: MANY Theories are Double Copies

For all these theories:

Z-theory	Open Sinng	Closed String
		Special Galileon
NLSM	(S) Born-Infeld	(S) Gr ((S) Einstein-YM)
Bi-Adjoint Scalar	(S) YM ((S) QCD)	Conf. (S) Gr+

a geometric guide to color-kinematics

Physics = Geometry

(the best polytopes are graphs of graphs!)

Cubic graphs contributing to 4-pt Tree

Convenient language: graphs of graphs

Theory specific input: Partial amplitudes

Graphs contributing to a tree-level color-stripped YM partial amplitude, generate the 1-skeleton of Stasheff polytopes joined only by \hat{t}

You might think you need (m-2)! of these color-stripped amplitudes to capture everything because this is what is required to touch every vertex at least once:

This ensures everyone talks well with each other. You might think you need (m-2)! of these color-stripped amplitudes to capture everything because this is what is required to touch every vertex at least once:

In fact, such a choice is the KK-basis, proven sufficient by Del Duca, Dixon, and Maltoni

But notice, because of color-kinematics, only (m-2)! nodes are needed to specify both the color factors and numerator factors of everyone

But notice, because of color-kinematics, only (m-2)! nodes are needed to specify both the color factors and numerator factors of everyone

This reduces the set of necessary ordered partial amplitudes (associahedra) to (m-3)! : "BCJ" relations

At every multiplicity the masters can be chosen to form the 1-skeleton of a polytope related by \hat{u} on every internal edge of the relevant scattering graphs

(these polytopes are called **permutahedra**)

Can linearly solve for the (m-2)! numerators of the masters in terms of the (m-3)! "BCJ" independent color-ordered amplitudes. In fact you get (m-3)! numerators in terms of the ordered partial amplitudes and (m-3)(m-3)! free functions.

(generalized gauge freedom)

Can linearly solve for the **(m-2)!** numerators of the masters in terms of the (m-3)! "BCJ" independent color-ordered amplitudes. In fact you get (m-3)! numerators in terms of the ordered partial amplitudes and (m-3)(m-3)! free functions.

Color-kinematics and automorphic invariance reduce everything to 1 function at tree-level at all multiplicity: the half-ladder dressing

Color-kinematics and automorphic invariance reduce everything to 1 function at tree-level at all multiplicity: **the half-ladder dressing**

Recall our automorphic invariant Jacobi satisfying dressing for NLSM: $n_s \propto s \times (u-t)$

This is not the only dressing. Can instead solve:

$$A(s,t) = \frac{n_s}{s} + \frac{n_t}{t} \qquad \qquad A(s,u) = -\frac{(n_u \equiv n_s - n_t)}{u} - \frac{n_s}{s}$$

We find that:

$$n_s = s A(s,t) - \frac{s}{t} \frac{n_t}{t} \qquad A(s,u) = A(s,t) \frac{t}{u}$$

Color-kinematics and automorphic invariance reduce everything to 1 function at tree-level at all multiplicity: **the half-ladder dressing**

1 function at each **m**

(m-2)! functions at each **m**

JJMC

Building blocks at 6-points:

color-ordered amplitude

set of masters

JJMC

TREE-LEVEL SUMMARY

- 1. Gauge invariant building blocks that speak to the theory: color-ordered amplitudes, associahedra
- 2. **CK means only need to specify the boundary data**: the master graphs, given by the relevant *permutahedron*
- 3. Can solve for the *full amplitude efficiently* in terms of the (n-3)! independent *associohedra*

physics <---> geometry

Can do this on loop-level cuts. Can generalize to the off-shell integrand either by introducing ansatze or with a massive over-redundancy of graphs (the pre-Integrand).

Natural question, given a generic (non color-dual) representation for a **gauge amplitude**, and all you want is the related **gravity amplitudes**.

Is there a simple path forward?

The idea is natural: take all non-vanishing kinematic-Jacobi combinations (the triangles), double-copy them with each other, use this information to *define* off-shell contact graphs in the double-copy theory.

with Bern, Chen, Johansson, Roiban (2017)

Playful construction

Playful Construction Using Double-Copy as a Principle

$U = V \otimes W$

1) Take theories that manifest Double-Copy, strip one "factor" replace with something else that obeys the same algebra.

2) Start with generic ansatze, constrain engineering weight, impose algebra.

Example of playful construction

Chan-Paton Stripped open string $OS(P(1,...,n)) = Z_P \otimes A$

Doubly-ordered Z-functions: obey monodromy relations on P

But obey field theory (n-3)! relations on its field theory KLT with Yang-Mills A.

$$Z_P(q_1, q_2, \dots, q_n) \equiv {\alpha'}^{n-3} \int \frac{\mathrm{d}z_1 \, \mathrm{d}z_2 \, \cdots \, \mathrm{d}z_n}{\mathrm{vol}(SL(2, \mathbb{R}))} \frac{\prod_{i$$

Take seriously Z-functions as encodingJJMC, Mafra, Schlottererpredictions for some (effective) field theory.

Replace sYM in OS with a color-stripped bi-adjoint Scalar

$$OS(P(1,...,n)) = Z_P \otimes A_{YM}$$

 $\mathbf{Z}(P(1,...,n)) = Z_P \otimes C$

Dressing with Chan-Paton factors renders something that can has the possibility of being interpreted as doubly-colored fieldtheory scattering amplitudes: we call it Z theory.

Color-Ordered tree-level Z-amplitude:

 $\mathcal{Z}(\tau(1,2,\ldots,n)) \equiv \sum_{P \in S_{n-1}} \operatorname{Tr}(t^1 t^{P(2)} \cdots t^{P(n)}) Z_{1,P}(\tau(1,2,\ldots,n))$

Color-Ordered tree-level Z-amplitude

 $\mathcal{Z}(\tau(1,2,\ldots,n)) \equiv \sum_{P \in S_{n-1}} \operatorname{Tr}(t^1 t^{P(2)} \cdots t^{P(n)}) Z_{1,P}(\tau(1,2,\ldots,n))$

Now look at:

$$Z \otimes C$$

"Low energy limit" -> bi-adjoint scalar:

Higher order in α' : $\sum \frac{z(g)c(g)}{D(g)}$

both CP-weights and kinematics conspire in z(g) to obey algebraic identities.

Get building block of open string predictions **only** when **z** numerators depend on kinematics AND Chan-Paton factors. Their **algebra** depends on both playing well together

JJMC, Mafra, Schlotterer

Color-Ordered tree-level Z-amplitude

 $\mathcal{Z}(\tau(1,2,\ldots,n)) \equiv \sum_{P \in S_{n-1}} \operatorname{Tr}(t^1 t^{P(2)} \cdots t^{P(n)}) Z_{1,P}(\tau(1,2,\ldots,n))$

Play with CP factors. Abelian CP generators means no-longer a bi-colored scalar.

 $\mathcal{Z}_{\times} \otimes C = \sum_{g} \frac{z_{\times}(g)c(g)}{D(g)}$
$\mathcal{Z}(\tau(1,2,\ldots,n)) \equiv \sum_{P \in S_{n-1}} \operatorname{Tr}(t^1 t^{P(2)} \cdots t^{P(n)}) Z_{1,P}(\tau(1,2,\ldots,n))$

Play with CP factors. Abelian CP generators means no-longer a bi-colored scalar.

 $\mathcal{Z}_{\times} \otimes C = \sum_{a} \frac{z_{\times}(g)c(g)}{D(g)}$

Low energy limit:

 $\lim_{\alpha' \to 0} \mathcal{Z}_{\times} \otimes C \to \underset{\text{JJMC, Mafra, Schlotterer}}{\text{Min}}$

$$\mathcal{L}_{\rm NLSM} = \frac{1}{2} \operatorname{Tr} \left\{ \partial_{\mu} \varphi \, \frac{1}{1 - \varphi^2} \, \partial^{\mu} \varphi \, \frac{1}{1 - \varphi^2} \right\}$$

$$\mathcal{Z}(\tau(1,2,\ldots,n)) \equiv \sum_{P \in S_{n-1}} \operatorname{Tr}(t^1 t^{P(2)} \cdots t^{P(n)}) Z_{1,P}(\tau(1,2,\ldots,n))$$

Abelian Z:
$$\lim_{\alpha' \to 0} \mathcal{Z}_{\times} \otimes C \to \operatorname{NLSM}_{\text{JJMC, Mafra, Schlotterer}}$$
$$\mathcal{L}_{\operatorname{NLSM}} = \frac{1}{2} \operatorname{Tr} \left\{ \partial_{\mu} \varphi \, \frac{1}{1 - \varphi^2} \, \partial^{\mu} \varphi \, \frac{1}{1 - \varphi^2} \right\}$$

Completely different story for the same prediction. Chen, Du '13 showed obeyed (n-3)! relns. Cheung,Shen '16 found an action that directly gives the color-dual kinematic story.

$$\mathcal{L}_{\text{NLSM}} = Z^{a\mu} \Box X^a_{\mu} + \frac{1}{2} Y^a \Box Y^a - f^{abc} \left(Z^{a\mu} Z^{b\nu} X^c_{\mu\nu} + Z^{a\mu} (Y^b \overleftrightarrow{\partial_{\mu}} Y^c) \right)$$

$$\mathcal{Z}(\tau(1,2,\ldots,n)) \equiv \sum_{P \in S_{n-1}} \operatorname{Tr}(t^1 t^{P(2)} \cdots t^{P(n)}) Z_{1,P}(\tau(1,2,\ldots,n))$$

Abelian Z:
$$\lim_{\alpha' \to 0} \mathcal{Z}_{\times} \otimes C \to \operatorname{NLSM}_{\text{JJMC, Mafra, Schlotterer}}$$
$$\mathcal{L}_{\operatorname{NLSM}} = \frac{1}{2} \operatorname{Tr} \left\{ \partial_{\mu} \varphi \, \frac{1}{1 - \varphi^2} \, \partial^{\mu} \varphi \, \frac{1}{1 - \varphi^2} \right\}$$

(Cayley Parameterization)

Completely different story for the same prediction. Chen, Du '13 showed obeyed (n-3)! relns. Cheung,Shen '16 found an action that directly gives the color-dual kinematic story.

$$\mathcal{L}_{\text{NLSM}} = Z^{a\mu} \Box X^a_{\mu} + \frac{1}{2} Y^a \Box Y^a - f^{abc} \left(Z^{a\mu} Z^{b\nu} X^c_{\mu\nu} + Z^{a\mu} (Y^b \overleftrightarrow{\partial_{\mu}} Y^c) \right)$$

Somehow abelianization is encoding a story related to SSB

 $\mathcal{Z}(\tau(1,2,\ldots,n)) \equiv \sum_{P \in S_{n-1}} \operatorname{Tr}(t^1 t^{P(2)} \cdots t^{P(n)}) Z_{1,P}(\tau(1,2,\ldots,n))$

$\begin{array}{ll} \text{Abelian Z:} & \lim_{\alpha' \to 0} \mathcal{Z}_{\times} \otimes C \to \operatorname{NLSM}_{\text{JJMC, Mafra, Schlotterer}} \end{array} \\ \end{array}$

Let's look at another copy, back to the superstring:

Abelian Open
$$\left[\left(\lim_{\alpha' \to 0} \mathcal{Z}_{\times}\right) \otimes A_{YM}\right] \to [NLSM \otimes A_{YM}]$$

Superstring:

Recall He, Liu, Wu '16; Cachazo, Cha, Mizera '16 found:

 $[NLSM \otimes A_{YM}] = SDBIVA$

For maximal sYM, 16 linearly realized, 16 nonlinearly realized, Bergshoeff, Coomans, Kallosh, Shahbazi Van Proeyen '13

$U = V \otimes W$

Order by order in higher derivatives can play all these constructive games and more using ansatze with the correct ingredients.

These are stories whose actions may be complicated but whose *predictions* may be maximally compact.

Open question as to what theories can be understood as nontrivial double copies and what their dual-stories are.

The amplitudes can still be interesting even if "crazy" from some perspectives.

Clearly lots of fun games yet to be played — very much an open field.

Classical Solutions

Do classical solutions double-copy?

(See also work of Saotome & Akhourycombinations of Anastasiou, Borsten, Duff, Hughes, Nagy)

Monteiro, O'Connell, and White began a program amassing evidence that the answer could be **yes**, at least for a certain class of solutions.

Monteiro, O'Connell, White '14

Luna, Monteiro, O'Connell, White '15

Luna, Monteiro, Nicholson, O'Connell, White '16

for general perturbative solutions: Luna, Monteiro, Nicholson, Ochirov, O'Connell, Westerberg, White '16 Goldberger, Prabhu, Thompson '17

scattering on sandwich plane-waves:

Adamo, Casali, Mason, Nekovar '17

Monteiro, O'Connell, and White

Schwarzschild

$$egin{aligned} \mathbf{g}_{\mu
u} &-\eta_{\mu
u} = rac{\mathbf{2GM}}{\mathbf{r}} \mathbf{k}_{\mu} \mathbf{k}_{
u} \ \mathbf{k}_{\mu} &= \{\mathbf{1}, \mathbf{\hat{r}}\} \end{aligned}$$

The double copy of

$$\mathbf{A}_{\mu} = rac{\mathbf{2GM}}{\mathbf{r}} \mathbf{k}_{\mu}$$

abelianized point charge

Monteiro, O'Connell, and White

Monteiro, O'Connell, and White

Natural question:

What process double copies to Hawking radiation?

Suggestive answer:

Schwinger pair production

JJMC, Torroba (to appear)

Classical gravity is a Double Copy?

Remind you of some of the double-copy positives:

+ Constrained solutions => can exploit for technical simplicity in prediction

+ Unifying web of relationships between theories

Open question: how far can this go?

Two Fantastic Postdocs at Saclay

Dr. Michele Levi

Dr. Laurentiu Rodina

EFT of Binary Inspiral (Spin effects)

Formal Scattering Amplitudes

Learn more about our group at fancyphysics.org