Using Majorana Polarization and other local order parameters to predict and detect exotic phases

Cristina Bena

IPhT, CEA Saclay

Collaborators: Doru Sticlet, Denis Chevallier, Nicholas Sedlmayr, Pascal Simon, Vardan Kaladzhyan, Ipsita Mandal, Julien Despres, J.M. Aguiar–Hualde

European Research Council Established by the European Commission

Introduction

Local electronic properties of 1D and 2D systems

- Graphene and Carbon Nanotubes
- Andreev bound states
- Impurity and Shiba states
- Majorana

Importance

- fundamental: strong interactions, fractional charge, non-Abelian statistics, topological phases
- applications: nanoelectronics, high-temperature superconductivity

Majorana states:

- condensed matter version of Majorana fermions (their own antiparticles) neutrinos ?
- equal combination of electrons and holes
- non-Abelian statistics, important pathway towards quantum computation

Majorana polarization

 new tool to characterize Majorana states in topological systems Sticlet, Bena, Simon PRL 2012, SedImayr, Bena PRB 2015

Majorana states

- Do they exist? How to probe experimentally?
- Observed signatures (zero-bias peaks) are controversial
- Can come from non-Majorana states (ABS Pillet, Quay, Morfin, Bena, Levy Yeyatti, Nat. Phys. 2010, others Lutchyn & al. Nat. Rev. Mat. 2018)

Mourik, Kouwenhoven & al. Science 2012

Jeon, Yazdani & al. Science 2017

Majorana polarization (MP)

- fundamentally-different approach: *local* order parameter
- unambiguously establish whether a state is Majorana
- new experimental framework for exotic states

Majorana fermions

Ordinary fermions
$$\{c_i^+, c_j\} = \delta_{ij}$$

Write in terms of Majorana fermions

$$c_j = (\gamma_{j1} + i\gamma_{j2})/2$$

 $\gamma_1 = (c^+ + c)/\sqrt{2}$ $\gamma_2 = i(c^+ - c)/\sqrt{2}$

$$\{\gamma_{i\alpha}^{+},\gamma_{j\beta}\}=\delta_{ij}\delta_{\alpha\beta}$$

$$\gamma_{i\alpha}^{+} = \gamma_{i\alpha}$$

Any fermionic Hamiltonian can be recast in terms of Majorana operators but very few can support solutions with isolated Majorana fermions

Majorana fermions

Hamiltonians with isolated localized Majorana fermions

$$H = -\mu \sum_{j} c_{j}^{\dagger} c_{j} + \sum_{j=0}^{N-1} \left[-t \left(c_{j+1}^{\dagger} c_{j} + c_{j}^{\dagger} c_{j+1} \right) - |\Delta| \left(c_{j} c_{j+1} + c_{j+1}^{\dagger} c_{j}^{\dagger} \right) \right].$$

$$\gamma_{j,1} = c_j + c_j^{\dagger}, \quad \gamma_{j,2} = i\left(c_j^{\dagger} + c_j\right)$$

$$H = -it \sum_{j=0}^{N-1} \gamma_{j,1} \gamma_{j+1,2}$$

Majorana polarization

Majorana states = equal combinations of electrons and holes need quantity to capture electron-hole overlap

General wavefunction: $\boldsymbol{\Psi}^{\dagger} = \boldsymbol{u} \boldsymbol{c}^{\dagger} + \boldsymbol{v} \boldsymbol{c}$

P = 0 if u,v=0 (purely fermionic states): c, c^{+} |**P**| is maximal for purely Majorana states (|u|=|v|): |**P**|_{max}=2| $uv|_{max}$ =| $u|^{2}$ +| $v|^{2}$ = density

Finding right quantity subtle (naïve guess: $P = 2uv^*$) MP = expectation of particle-hole operator

MP = vector in complex plane: (pseudo-spin)

Sticlet, **Bena**, Simon PRL 2012 SedImayr, **Bena**, PRB 2015

Majorana polarization

Spinful models
$$\boldsymbol{\Psi}^{\dagger} = \boldsymbol{u}_{\uparrow} \boldsymbol{c}_{\uparrow}^{\dagger} + \boldsymbol{v}_{\uparrow} \boldsymbol{c}_{\uparrow} + \boldsymbol{u}_{\downarrow} \boldsymbol{c}_{\downarrow}^{\dagger} + \boldsymbol{v}_{\downarrow} \boldsymbol{c}_{\downarrow} \qquad \boldsymbol{P} = 2 \boldsymbol{u}_{\uparrow} \boldsymbol{v}_{\uparrow} + 2 \boldsymbol{u}_{\downarrow} \boldsymbol{v}_{\downarrow}$$

Same-spin combinations (opposite to BCS)

$$\Psi_M^{\dagger} \propto c_{\uparrow}^{\dagger} + c_{\uparrow}$$
 or $c_{\downarrow}^{\dagger} + c_{\downarrow}$ Zero-energy BCS $\propto c_{\uparrow}^{\dagger} + c_{\downarrow}$

Spin structure \rightarrow MP = 0 for any other zero-energy non-Majorana states (Andreev bound states, impurity, Shiba, etc.)

MP for a spatial distribution

 On each site define a MP vector Pr

$$\mathbf{P}\left(\mathbf{r}\right) \equiv \begin{pmatrix} P_{x}(\mathbf{r}) \\ P_{y}(\mathbf{r}) \end{pmatrix} \equiv \begin{pmatrix} -2\operatorname{Re} \begin{bmatrix} u_{\mathbf{r}\uparrow}v_{\mathbf{r}\uparrow} + u_{\mathbf{r}\downarrow}v_{\mathbf{r}\downarrow} \\ -2\operatorname{Im} \begin{bmatrix} u_{\mathbf{r}\uparrow}v_{\mathbf{r}\uparrow} + u_{\mathbf{r}\downarrow}v_{\mathbf{r}\downarrow} \\ u_{\mathbf{r}\uparrow}v_{\mathbf{r}\uparrow} + u_{\mathbf{r}\downarrow}v_{\mathbf{r}\downarrow} \end{bmatrix} \end{pmatrix}$$

Criterion to have a
 Majorana state

$$C = \left| \sum_{\boldsymbol{r} \in \mathcal{R}} \left[P_x(\boldsymbol{r}) + i P_y(\boldsymbol{r}) \right] \right|^2 / \sum_{\boldsymbol{r} \in \mathcal{R}} \rho(\boldsymbol{r})$$

Sticlet, Bena, Simon PRL 2012 SedImayr, Bena, PRB 2015

Majorana polarization

MP vector: Magnitude = electron-hole overlap Direction - (e,h) phase

Criterion to test existence of topological phases

- Majorana states have
 - |*MP*| = *density* → locally Majorana
 - All MP vectors aligned
- Non-Majorana states
 - |**MP**| < density

MP Applications

Model

SedImayr, Aguiar-Hualde, Bena, PRB 2016

MP is a good order parameter for the topological transition

Sticlet, Bena, Simon PRL 2012

the MP of 1 over a spatial region \mathcal{R} , thus it must exhibit MP structure). In Figs 4.5 we plot the MP for a variet of different low energy states. In Fig. 4 we plot the MI vector for a 51 \times 201 system with $\Delta = 0.3t$ and $\alpha = 0.5t$

Future directions

I: How to measure Majorana polarization

II: Applications of Majorana polarization

III: Exchange statistics of quasi-Majorana states

IV: New topological local order parameters

I. How to measure MP

$$\boldsymbol{\Psi}^{\dagger} = \boldsymbol{u}_{\uparrow} \boldsymbol{c}_{\uparrow}^{\dagger} + \boldsymbol{v}_{\uparrow} \boldsymbol{c}_{\uparrow} + \boldsymbol{u}_{\downarrow} \boldsymbol{c}_{\downarrow}^{\dagger} + \boldsymbol{v}_{\downarrow} \boldsymbol{c}_{\downarrow}$$

Measuring the MP - need $P = 2 u_{\uparrow} v_{\uparrow} + 2 u_{\downarrow} v_{\downarrow}$

- impossible *directly:* Majoranas cannot tunnel in and out
- indirect methods
- Tunnel current to STM tip: local density of states = $|u_{\uparrow}|^2 + |u_{\downarrow}|^2$
- Spin-polarized STM:
 |u_↑|² |u_↓|², Re[u_↑u_↓], Im[u_↑u_↓]

Need also \mathbf{v}_{\uparrow} , \mathbf{v}_{\downarrow} !!!

I. How to measure MP

Measuring the MP - need $P = 2 u_{\uparrow} v_{\uparrow} + 2 u_{\downarrow} v_{\downarrow}$

And reev reflection $\rightarrow u$, v

- normal / ferromagnetic tip
- superconducting tip, eventually p-wave
- calculate conductance and noise
- vary Andreev / normal tunnelling
- modify superconducting phase difference,

ferromagnetic angle

Discussions and collaboration with experimentalists: *H. Beidenkopf, N. Avraham (Weizmann), F. Massee (LPS Orsay), L. Simon (Mulhouse), T. Cren, D. Roditchev (Paris)*

II. Applications of the MP

- Topological candidates:
 - bismuth
 - doped graphene
 - transition metal dichalcogenides

- Interacting systems:
 - derive MP within a Green's function formalism
 - test the stability of Majoranas

Tight-binding model, MatQ code Experiments *H. Bouchiat (Orsay)*

IV. New local order parameters

- Aim: construct local order parameters → new local probes of exotic bound states
 - analogous to local density of states
 - zero for trivial states, non-zero for topological/exotic states: phase transitions
- Twisted graphene bilayers: superconducting for specific twist angle
 - \rightarrow flat band

Cao & al. Nature 2018

IV. New local order parameters

Twisted graphene bilayers: what kind of superconductivity ?

- **d** + *i* **d** and other singlet / triplet topological superconductivity proposed *Xu* & al PRL2018, Fidrysiak & al PRB2018, Roy & al arXiv:2018
- SC phases support topological edges states
- local order parameters → induced SC pair symmetry
 - for edge states MP: $P_{MP} = 2 u_{\uparrow} v_{\uparrow} + 2 u_{\downarrow} v_{\downarrow}$
 - for Andreev bound states ABS density: $P_{ABS} = 2 \ u_{\uparrow} v_{\downarrow} + 2 \ u_{\downarrow} v_{\uparrow}$?

(opposite-spin electron-hole overlap)

- calculate spatial distribution of MP and ABS density
- construct method to measure