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Motivations

The expansion of the Universe is accelerating

ds® = —dt* + a*(t)dz”
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— = (p+3p)>0
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G = 8mG Tateer

Acceleration implies some form of unknown
matter with negative pressure: dark energy
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Motivations

General relativity tested over special ranges of scales and masses. Cosmology is a window for
testing it on very large distances. Distinguish among models and discover new physics.
Cosmological precision tests of ACDM (precision tests of the Standard Model at the LHC)
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Motivations

General relativity tested over special ranges of scales and masses. Cosmology is a window for
testing it on very large distances. Distinguish among models and discover new physics.
Cosmological precision tests of ACDM (precision tests of the Standard Model at the LHC)
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Gravitational Waves propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where
gravitons are absorbed and dispersed.

\/xg ~ (Mp1H2)Y3 ~ (1000 km) ™
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Gravitational Waves propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where
gravitons are absorbed and dispersed.

\\/\3 ~ (Mp1H2)Y? ~ (1000 km) ~*
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Gravitational Waves propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where
gravitons are absorbed and dispersed.
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Gravitational Waves propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where
gravitons are absorbed and dispersed.

In general relativity:

Fij + 3H A5 + ki = 0

d82 — —dtz -+ CLQ(t) [(SZ] + ’Yz'j] diﬂdfj , Yizs — U = 81-%-]- , H = d/a



Gravitational Waves propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where
gravitons are absorbed and dispersed.

MG: Frequency independent effects:

Fig + (3 + an) Hig + cpk*yi; = 0
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damping speed of propagation
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Gravitational Waves propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where
gravitons are absorbed and dispersed.

MG: Frequency independent effects:

Yig + (3 + o) Hij + crkyij =0

/ speed of propagation

damping
Ay # di

Deffayet, Menou ’07;
Calabrese, Battaglia, Spergel, ’16;
Amendola et al. '17, Belgacem et al. ’17,

etc...

LISA: 04,, = 0.03 —0.1

Amendola, Sawicki, Kunz, Saltas ‘18



Gravitational Waves propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where
gravitons are absorbed and dispersed.

MG: Frequency independent effects:

Yij + (3 + am) Hij + ek = 0

/ V\ speed of propagation

damping _35%10-15 < Cg — C < 7% 1016

C
3

W
N&e‘l Q"oeﬁ G?”% st

GW‘I 7081 7 — GRB-I 7081 7A 1750 1 Lightcurve from Fermi/GBM (50 — 300 keV)
g 15001
S
o 1250 1
; |
‘;’ 1000 - WAl L ||,1 |||"|!F 1 L 0 "HIF I .a..mll - LA " i HJI - Ln j _1|W |i||rl.4|||_w| i ﬂlulll .".
S 750_ 1*]'“11 Th! NM 'M I ]] || T I T
g Gravitational-wave time-frequency map
/m&\ 300
w200
g
&
é 100

50
—10 -8 —6 —4 -2 0 2 4 6

Time from merger (s)



Gravitational Waves propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where
gravitons are absorbed and dispersed.

MG: Frequency dependent effects:
Yij + 13+ am)H + T'(k)] vi5 + Gk + f(k)] 7i; =0

decay / \ dispersion
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related by the optical theorem

L(k)w(k) = Im [ f (k)]



Gravitational Waves propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where
gravitons are absorbed and dispersed.

MG: Frequency dependent effects:
Yij + 13+ am)H + T'(k)] vi5 + Gk + f(k)] 7i; =0

decay / \ dispersion

s : T
0l Y ‘ Y
i —
related by the optical theorem
I'(k)w(k) = Im [ f (k)]
I'(k o f(k) o 1 1018 2w x 100 Hz 40 Mpc
w "~ dgw w2 ™~ dgw o, dg

See e.g. Yunes, Yagi, Pretorius ’16; Abbott et al. ‘17



Scalar-tensor theories

Simplest models of modified gravity are base on single scalar field (universal coupling)

Ex: L=R+V(¢)—g""0,90,¢ quintessence
Gy = 876 (Tt 4 1(0)

w = 1



Scalar-tensor theories

Simplest models of modified gravity are base on single scalar field (universal coupling)

Ex: L=R+G:¢,X), X=g""0,00,¢ k-essence
Gy = 876 (Tt 4 1(0)

¢ # 1: clustering



Scalar-tensor theories

Simplest models of modified gravity are base on single scalar field (universal coupling)

Ex: L=f(p)R+G2¢p,X), X =g""0,00,¢  scalar-tensor gravity

modified) matter o
Gmodified) — 8 (Tt 4 1(9))

self-acceleration



Moditied gravity
Simplest models of modified gravity are base on single scalar field (universal coupling)

Ex L= f(¢)R+GCa(d X), X =g"0,00,¢

modified) matter o
Gmodified) — 8 (Tt 4 1(9))
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Screening

Simplest models of modified gravity are base on single scalar field (universal coupling)

Ex: L = f($)R + Ga(¢, X) + Gs(¢, X)Og 0=g""V,V,
A—;b > 1 Vainshtein screening: large classical scalar field nonlinearities
3
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Screening

Simplest models of modified gravity are base on single scalar field (universal coupling)

Ex: L = f($)R + Ga(¢, X) + Gs(¢, X)Og 0=g""V,V,
A—;b > 1 Vainshtein screening: large classical scalar field nonlinearities
3

V=0 U £

Ag ~ (Mp1H2)Y3 ~ (1000 km)~?
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Is this the end of the story?



(Generalized theories

Horndeski 73
Most general Lorentz-invariant scalar-tensor theory with 2nd-order EOM. Deffayet et al. 11

L= Gy(¢,X)R+ Ga(¢, X) + G3(¢, X) O ¢ = X=9"budu
- 2G1x (6, X)[(00)° = (d0)?]

+ G5(¢, X)G* ¢, + %G5,X(¢a X) [( Cb)g — 3 ¢(¢;W)2 + 2(¢;MV)3]




(Generalized theories

Horndeski 73

Most general Lorentz-invariant scalar-tensor theory with 2nd-order EOM. Deffayet et al. 11

L = Gy(d, X)R + Go(h, X) + G3(¢p, X) O
2G4 x (6, X) |(09)* = (d)?|

+ G(6, X)G 6, + 3G (6, X)

Degenerate theories: most general stable theory.

¢=¢y X=9"0.u0u

¢)° — 3

O(Dspn)” + 2(P30)”]

Langlois, Noui ’15; Crisostomi, Koyama, Tasinato ‘16

Beyond Horndeski theories:

!/ ! !
- F4(qb, X)EW@GM o P ng;uqbsu’gb;qub;pp’

/7 /
— F5(¢7 X)E'LWPJEM vPe ¢;u¢;u’¢;uu’¢;pp’¢;aa’

XGs xFy =3F; |Gy —2X Gy x — (X/2)G5,4]

Gleyzes, Langlois, Piazza, FV ’14



Setting cr=1

L= Gy(¢, X)R+ Go(d, X) + Ga(, X) O ¢ =y X=9"0u0u
- 2G1x(6, X)[(06)* = (6,)°]

1
+ Gs(6, X)G" Gy + 5G,x (9, X) | (O6)° = 300(0y)? + 2(9y0)°]
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Setting cr=1

L = Ga(¢, X)R + Ga(¢, X) + G3(¢, X)O¢ =9y X=9"dudy
- 2G1x(6, X)[(06)* = (6,)°]

=+ G5(¢7 X)G/’l’l/¢;/l/y + %G5,X(¢7 X) {( qb)g -3 ¢(¢§MV)2 + 2(¢§MV)3]

— F4(¢7 X)G'L“//(Oye'u vr J¢;u¢;u’¢;z/u’¢;pp’
— F5(¢7 X)G,uv/oaeu vee ¢;,u¢;,u’¢;yy’¢;pp’¢;aa’
Scalar field play with gravity through higher derivatives:
0 o

L, ~ (%) — G (Okif)°

2 —1x 2G4 x —Gs.y — (Hp — ¢)Gs x +XFy — 3HX HF5

Expected from LSS:  |c5 — 1| < few x 0.01



Setting cr=1

L =G4, X)R+ Ga(0, X) + G3(0, X)0¢ p=0¢5 X=g""0,u0.
— 2G4, (6, X) (06)? = (6,)°
=G5 TU,™ . Yipy T "’;"4 s — PV, BN
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Scalar field play with gravity through higher derivatives:
0 o

£7 ~ (%‘j)Q - Cczr(ak%:j)Q

2 —1x 2G4 x —Gs.y — (Hp — ¢)Gs x +XFy — 3HX HF5

Expected from LSS:  |c5 — 1| < few x 0.01



Setting cr=1

L = Ga(¢, X)R + Ga(¢, X) + G3(¢, X)O¢ =9y X=9"dudy

— 2G4 x (¢, X) [( ¢)? — (¢;uu>2]

Scalar field play with gravity through higher derivatives:
0 o

£7 ~ (%‘j)Q - Cczr(ak%:j)Q

2 —1x 2G4 x —Gs.y — (Hp — ¢)Gs x +XFy — 3HX HF5

Most general theory compatible with ct=1: G5 = F5 =0 , XFy=2G4 x

Creminelli, FV ’17; Sakstein, Jain ’17 ; Ezquiaga, Zumalacarregui ’17 ; Baker+ 17



What remains

L =G4, X)R+ Ga(0, X) + G3(¢p, X)Uo p=0¢5 X=g""0,u0.
— 2G4, (6, X) (06)? = (6,)°
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The decay of GW

Creminelli, Lewandowski, Tambalo, FV ‘18

Beyond Horndeski with cr=1 implies interactions between GW and scalar fluctuations &

(k1)
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The decay of GW

Creminelli, Lewandowski, Tambalo, FV ‘18

Beyond Horndeski with cr=1 implies interactions between GW and scalar fluctuations &

N m(k1)
Loy = A—fg’ngamajwc
3
v5 (p)
Ay = (Mplﬂg)l/g T = 00/ g
m(k2)

Perturbative decay of gravitons into s (cz = sound speed of x fluctuations):

- for cs> 1 kinematically forbidden: |p] = cs(|E1| -+ |122|) > |E1 + IZ2| = |p]
- for cs = 1 kinematics implies vanishing interaction: -y;; (ﬁ)l%l% =0

« for cs< 1 allowed




O0p corrections

Creminelli, Lewandowski, Tambalo, FV ‘18

Spontaneous Lorentz-breaking implies modifications of the dispersion relation

N (k1)
Loy = A—{?ngj 0,70,
3
75 (p)
Ay = (Mplﬂg)l/g T = 00/ g
m(k2)
Graviton self-energy:
q—Dp
k8(1 - C2)2 L2
2 2 2 s 2
w” =k* —ay ASCT log (_(1_68)E
q

Optical theorem: = Imw? =Tw




Gravitational Waves propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where
gravitons are absorbed and dispersed.
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What remains

L =G4, X)R+ Ga(0, X) + G3(¢p, X)Uo p=0¢5 X=g""0,u0.
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What remains

L= Ga(¢,%)R+ Ga($, X) + G3(¢, X) 0o o= X =970

Y

XFy=2G4x=0

 2XGux
g = — —
H X




L= f(o)R+ G, X) + G3(9, X)

Is this the end of the story?




L= f(o)R+ G, X) + G3(9, X)

Is this the end of the story?

Yes.




Summary

« For cs< 1 decay is allowed and related to imaginary part of the calculable quantum correction
of the dispersion relation

« For cs> 1 no decay but real part of the calculable quantum correction of the dispersion
relation

* For cs= 1 no decay and no calculable quantum correction but other UV dependent quantum
corrections suppressed by powers of 9/A3

£CT:1, no decay — G4(¢)R -+ G2(¢7 X) + GS(gb) X) ¢

| . 1,
GW decaying rate and loop corrections Lonr A2 Vs 0;m0; T
suppressed 2
Ag — (MP1H0)1/2 =>> A3
The theory is radiatively stable Luty, Porrati, Rattazzi ‘03

Pirstkhalava, Santoni, Trincherini, FV ‘15



Conclusion

® GWs dramatically change the prospect for LSS: huge cut in available models

® Many theories are ruled out by cT=1, absence of GW decay and modifications in
the graviton dispersion relation

@ Constraints on other theories: massive (bi-)gravity (Ph. Brax)

® Future: Decay is perturbative. What happens with high occupation number?






