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Outline

¢ LIGO-VIRGO
& LISA: space based GW observatory
& PTA: detecting GWs with Pulsar Timing Array:.



Gravitatonal wave landscape
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Basic principle of GW detection

a) hy-polarized GW b) hy-polarized GW
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Simplified scheme of ground-based GW detectors
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Sensitivity of GW detectors is limites by: seismic noise at low frequencies, thermal noise in
mid. freqs and quantum shot noise at high freq.
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GW observatories
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Detecting GW: Matched filtering

GW150914 Raw data GW from coalescing BHs
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We use matched filtering: searching for a particular pattern in the noisy data:
tracking amplitude and phase.
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Matched filtering
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Parameter esttmation

~ Signal Residuals
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Noise = Data - signal
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whitened strain (units of noise stdev)

whitened strain (units of noise stdev)

Matched filtering: GW 150914
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Parameter estimation

— Data
— Predicted
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GW signal from merging BHs

Inspiral Merger Ring-
down
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Parameter estimation

Detected binary systems
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Testing GR
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Tesung GR

[ We can check self consistency of GR: analyze two parts of the same signal
independently and check if estimated parameters overlap
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Modelling GW signal from coalescing BH binaries
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¢ GW signal can be conditionally split into 3 parts: inspiral (slow orbital
evolution under radiation reaction, merger, and ringdown (remnant BH

releases excitations as quasinormal oscillations)
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Other GW sources (LIGO-VIRGO)
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http://arxiv.org/abs/1212.2289
https://physics.anu.edu.au/quantum/cgp/research/datatheory/neutronstars.php

Laser Interferometer Space Antenna (LISA)
¢ LISA: GW observatory in space. Launch data 2032-2034

¢ LISAPathfinder - Technology mission to demonstrate technical readiness of
LISA - one of the most successful ESA mission.




LLISA (cartoon)




What s special about LISA data

$ GW signals are long lived (monts-years) and strong
$ LISA data will contain thousands of GW signals simultaneously present in
the data (overlapping in time and in frequency). We need to separate and

characterize each signal.

¢ The noise is non-stationary (gaps, glitches, “breathing”)
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Massive BH binaries

¢ We think the all galaxies contain massive BHs in their nuclei: MBH with mass
4mln. solar mass is in the centre of our Galaxy

¢ MBHs are formed together with galaxies and accumulate mass by accreting a
gas and through merging with other MBHs

¢ Galaxies merge (observations), as result we could have a MBH binary which
could merge in a reasonable time

¢ Stars and / or gas are required to dissipate orbital momentum from MBH binary
and bring it in GW driven regime

\S

Image: Hubble telescope
Credits: Hassinger+, VLA, Chandra, NASA 24 I ‘ &



EMRIs (extreme mass ratio inspirals)

$ Massive BHs could be embeded in the stellar cusps (high density stellar
environment)

¢ Massive BH could capture a compact object (NS, stellar mass BH) which
starts moving in a very eccentric orbit which shrinks under GW radiation

¢ EMRI: Binary system with an extreme mass ratio: 107 - 105

¢ Compact object completes ~ 10¢ orbits in the close vicinity of a MBH
before plunge

25 “



EMRI

365 days before merger, axis units AU, current average speed 0.164 ¢

Credits: S Draco, CalTech
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White dwarf binaries in our Galaxy

¢ We expect to have ~107 white dwarf binaries in the LISA band, and about 1(
be indiviually detected, other form stochastic GW signal (foreground)

¢ GW signal is almost monochromatic
¢ We have guaranteed (verification) binaries observed in e/m (GAIA, LSST)

detected binaries: unsubtracted
detached, foreground
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Pulsar Timing Array: PTA

The main idea behind pulsar timing array (PTA) is to use ultra-stable

millisecond pulsars as beacons for detecting GW in the nano-Hz range 10 -
107 Hz

Credits: D. Champion 28



Millisecond pulsars

Pulsars are neutron stars with rapid rotation and strong magnetic field.
Period from few seconds to few milliseconds (MSP). MSP - usually old,

recycled pulsars, often in binaries.
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¢ Each pulse has a lot of micro-structure but stable is averaged over

hour.

$ We use average pulse profile to get time-of-arrival (TOA) for the pulses
¢ We know well the pin of pulsars: can predict TOAs and subtract from

measured: residuals
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T'iming residuals

The complete timing model for TOAs depend on many parameters
ttoa = ttoa(Pa Pa Pa Aclocka ADM(L)a A@—@a AEa AS)

L P 7 P period of pulsar, its spin-down, glitches.

AT difference in local clock and terrestrial

App (L) delay caused by interstellar medium

A@_@ translation from observatory frame to SSB
Arp accounts for the time dilation from oving pulsar and grav. redshift
caused by Sun, planets or binary component

Ag (Shapiro delay) extra time required by the pulse to travel through the
curved space-time

di — 1. — 1 —dl .. S 0ic o hoise

toa toa
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Supermassive BH binaries

¢ The main GW source in PTA: population of supermassive BH binaries (mass 107 -
1010 solar) on the broad orbits (period ~ year)

¢ GW is monochromatic over decades: many signals form stochastic GW signal at lov
frequencies
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Correlaton

The key feature of stochastic GW signal: it is correlated across pulsars in the
array with characteristic quadrupolar pattern given by Hellings-Downs curve:
the correlation depends only on the angular separation of pair of pulsars
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Fig. from IOP, Physics World

55



Upper limit on GW in nano-Hz band

¢ GW are not yet detected by PTA: require long monitoring of pulsars
(decades) to integrate the signal oput of noise + more stable pulsars.

¢ We can set un upper limit on the strength of GWs in the nano-Hz band:

upper limit on the strain of individual signals.
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Upper limit on the stochastic GW signal

We can rule out some over-optimistic astrophysical models.

Pessimistic [e.g. Sesana et al. (2016)]

Optumistic |e.g. McWilliams et al. (2014)]
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[Nanograv, arXiv: 1801.02617]
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Conclusion

¢ LIGO-VIRGO completed two observational runs: detected handful of GW
signals from colaesing binaries. Next run will start next year with (hopefully)
improved sensitivity. More signals (surprises?)

¢ LISA is in the phase “A”: it will deliver info on evolution of MBHs and their
environment, structure of Galaxy, fundamental physics, cosmography.

¢ PTA: detection of GWs in the nano-Hz band is inevitable: we need long
integration time. New large radiotelescopes (FAST, SKA) will discover new
pulsars and improve on the existing.
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