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The challenges in designing superconducting magnets

- Magnets for particles detection

- Magnets for particles accelerators

Why AI methods can be useful

Examples of Genetic Algorithms Applications for Superconducting Magnets

- Description

- Ex : how to optimize the conductor cost in a 3D magnet design : the MADMAX dipole

- Ex: how to optimize the magnetic field quality in a 2D magnet design : the F2D2 dipole

Conclusions
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Why superconductivity?

Nb3Sn bronze-process wire [1]

Nb3Sn

Cu

Superconductive materials show zero electric resistance

 they can transport a lot of current without heating

The superconducting state is limited by

• 𝐵 magnetic field

• Ԧ𝐽 current density inside the material

• 𝑇 temperature

Hg resistivity
Superconductivity phase diagram
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Advantages:

• Very high magnetic field (up to 40T)

• Reduced dimensions (10x compared to 

copper magnets) 

 scale economy, better quality control in 

performances

• No ohmnic power dissipation  reduced

comsumptions

Why superconducting magnets?
The CMS solenoid at CERN
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Drawbacks:

• Must work in cryogenic environment (1.8 

K to 70 K)

• The superconducting state is very fragile 

 even a deposit of few mJ can make a 

magnet transit to the normal state

• High magnetic field + High current 

High forces & high energy density in the 

materials

Why superconducting magnets?

The Nougat solenoid (32.5 T) @ LCNMI Grenoble 

The quadrupoles MQYY for Hi-Lumi

LHC, designed and assembled by CEA 

The ISEULT MRI @ Neurospin
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• Field quality

∆𝐵/𝐵~10−4 for particle accelerators

∆𝐵/𝐵~10−8 for MRI

• Mechanics

Stress can reach 300 MPa on the conductor

• Cryogenics

Must cool down tons of materials

• Protection

Transition to the normal state means 1000s A in 

~mm² wires (normal Cu wire carries some A)

• Cost

Superconductors can cost up to 1000$/kAm

Which challenges?

P. Fazilleau – Ecole des accelerateurs 2016

FCC Dipole & Quadrupole
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Field Quality

Depends on:

- Position of the coils 

linear contribution to 𝐵

- Position of the ferromagnetic

materials 

non linear contribution to 𝐵

Problem is : 

Given a certain 𝑩 according to specs,

Field Quality

Minimization of the ratio ∆𝐵/𝐵 in the bore region

Cost

Minimization of the ratio ∆𝐵/𝐵 on the conductors

Cost

Depends on:

- The volume of conductor needed

- The quantity of superconducting

material needed in the cable to stand 

the magnetic field peakNot possible to write

down an analytical

function

bore
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Algorithms Applications for 

Superconducting Magnets
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Field Quality

F2D2

The 16 T graded Nb3Sn flared ends 

dipole to prove the feasibility of the 

Future Circular Collider at CERN.

Cost

MADMAX

The 9 T NbTi, 1.3 m of useful diameter

dipole (the biggest in the world) to find

axions-like particles.

bore 

diameter
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One of the first AI methods

• Invented by John Henry Holland, prof. at University

of Mitchigan, in Adaptation in Natural and Artificial 

Systems (1975, MIT Press)

• They mock the darwinian evolution

• Used in physics, engineering, finance… to find

maximum/minimum of unknown functions

Designing superconducting magnets using simple genetic algorithms



Concepts:

• Each parameter = GENES

• Set of parameters = INDIVIDUAL

• Set of individuals = POPULATION

• Evolution of the population = GENERATION

Working Principles

GENETIC ALGORITHMS : WORKING PRINCIPLE
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M - Individual

Simulation

Results

Rank of the best

Individuals

(natural selection)

Reproduction

(mutations to 

avoid local 

min/max)
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N - Generations

Designing superconducting magnets using simple genetic algorithms



GENETIC ALGORITHMS
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Initial Population

Step 1

Choose the parameters (genes) and their range

Ex:

𝐿𝑥𝑦1 ∈ −2,1

𝐿𝑥𝑦2 ∈ −3,4

…
Step 2

Build an individual (by randomic PDF 

generation). 1 number for each gene

𝐿𝑥1 =
𝐿𝑥11 = 0.5
𝐿𝑥12 = 1.2

…

Step 3

Build a population

𝐿1 =
𝐿11 = (𝐿111, 𝐿112, … )
𝐿12 = (𝐿121, 𝐿122, … )

…

How to choose correctly

𝜈 number of parameters (degree of 

freedom) of the problem

𝑚 number of individuals ≥ 𝐷𝑣,2 =
𝑣!

𝑣−2 !

𝑛 generations* > 2𝜈−1

Minimal number of simulations  

𝑚 × 𝑛 = 2𝜈−1
𝑣!

𝑣 − 2 !

Limit the number of parameters

*criteria (n actually depends on how fast the function goes to 

min / max)



EXAMPLE: MADMAX BLOCK DIPOLE

Page 14

GA parameters:

• 0 < ∆𝐿 < 300 mm B1B4

• 0 < ∆𝐿 < 400 mm B5

• 0 < ∆𝐿 < 500 mm B6

B1

B6
∆𝐿

Designing superconducting magnets using simple genetic algorithms

Population = 30 individuals

Generations = 32  

Tot forecast 3D simulations = 960
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Simulation

Step 1 – Fitness Function

Choose what do you want to evaluate

Ex: Volume – Cost function for the conductor

𝐶𝑐𝑜𝑛𝑑 = 𝑉𝑐𝑜𝑛𝑑 𝐶𝐶𝑢 1 −
𝐽𝐸

𝐽 𝐵𝑝𝑒𝑎𝑘
+ 𝐶𝑁𝑏𝑇𝑖

𝐽𝐸
𝐽(𝐵𝑝𝑒𝑎𝑘)

𝐽 𝐵𝑝𝑒𝑎𝑘 = 1 −𝑚 𝐽𝑐
𝐵𝑝𝑒𝑎𝑘

1 −𝑚
, 𝑇0

Where:

- 𝑉𝑡𝑜𝑡 conductor volume

- 𝐽𝐸 engineering current density

- 𝑇0 operating temperature

- 𝑚 = 0.1 LL margin

- 𝐶𝐶𝑢 copper volume cost

- 𝐶𝑁𝑏𝑇𝑖 NbTi volume cost

Step 2

Evaluate the fitness function

(simulations) for each individual

𝐶𝑐𝑜𝑛𝑑 𝐿11 , 𝐶𝑐𝑜𝑛𝑑 𝐿12 , …

10.65 T
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Rank of the best individuals

Step 1 – Choose if you want to find min or 

max of your fitness function

Ex: min of 𝐶𝑐𝑜𝑛𝑑(𝑉𝑐𝑜𝑛𝑑 , 𝐵𝑝𝑒𝑎𝑘)

Step 2 - Ranking

Rank the individual according to which one has 

the minimal value.

Ex:  

𝐿11 = 2000

𝐿12 = 1500

𝐿13 = 1700

𝐿14 = 1900

𝐿15 = 1600

𝐿16 = 2100

Step 3

Assign a probability of reproduction to the 

individuals according to the rank

Criteria:

𝑖 rank position

𝒑𝒊 =

𝒎− 𝒊
𝒎

σ𝒊=𝟏
𝒎 𝒎− 𝒊

𝒎

1. 𝐿12 ⟶ 𝑝 𝐿12 = 0.333
2. 𝐿15 ⟶ 𝑝 𝐿15 = 0.267
3. 𝐿13 ⟶ 𝑝 𝐿13 = 0.200
4. 𝐿14 ⟶ 𝑝 𝐿14 = 0.133
5. 𝐿11 ⟶ 𝑝 𝐿11 = 0.067
6. 𝐿16 ⟶ 𝑝 𝐿16 = 0.000

1. 𝐿12 = 1500

2. 𝐿15 = 1600

3. 𝐿13 = 1700

4. 𝐿14 = 1900

5. 𝐿11 = 2000

6. 𝐿16 = 2100
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Reproduction

Step 1 – Coupling

Random extraction of two numbers 𝑥1, 𝑥2 with an 

uniform PDF [0,1] 

Ex: 𝑥1 = 0.3, 𝑥2 = 0.7

Calculate the cumulative function 𝑝𝑖, assigning

the respective parameter

1. 𝐿12 ⟶ [0,0.333]
2. 𝐿15 ⟶ (0.333,0.6]
3. 𝐿13 ⟶ (0.6,0.8]
4. 𝐿14 ⟶ 0.8,0.933
5. 𝐿11 ⟶ (0.933,1]

Where 𝑥1, 𝑥2 falls, you have your couple ;)

No self reproduction allowed.

Step 2 – Cross-over 

Random extraction of two numbers 𝑐1, 𝑠2
𝑐1 uniform PDF [cross-over,1] 

𝑠2 uniform PDF [0,1] 

Generally, cross-over > 0.7

If 𝒙𝟏 < 𝒄𝟏 and 𝒙𝟐 < 𝒄𝟏
Reproduction! ;))

Else

𝑳𝟐𝟏 = 𝑳𝟏𝟐

𝐿211 = 𝑠2 ∙ 𝐿121 + 1 − 𝑠2 𝐿131
𝐿212 = 𝑠2 ∙ 𝐿122 + 1 − 𝑠2 𝐿132
𝐿213 = 𝑠2 ∙ 𝐿123 + 1 − 𝑠2 𝐿133
…

For every

gene

Until we replace 𝐿1
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Bonus: Mutation

Step 1 

For each gene, 

Random extraction of one number

𝑥3 uniform PDF [0,1] 

If 𝑥3 < 𝑝𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

Then rebuild the gene (step 1 Initial population)

Generally 𝑝𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 < 0.1

Repeat for each generation



IMPLEMENTATION
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Implementation in OPERA 3D

GA Random

(Initial population)

Modeller

Geometry

implementation

Solver
Post Processor

Analysis & Results

GA Engine

Individuals rank

Reproduction

New Population

• Automation of the process

• Parallelization of the process

• Interface between 5 different programs

Designing superconducting magnets using simple genetic algorithms
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Intermediate solution

Starting point

7980 k€ 3088 k€

All coils aligned

GA study varying many parameters

2816 k€

but not feasible for assembly

Final solution

GA + parametric study

to understand the sensitivity of parameters



F2D2
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3D assembly 2D magnetic

iron

iron

coils



F2D2 – FIELD QUALITY
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Bore aperture

𝐵𝑦 + 𝑖𝐵𝑥 = 10−4𝐵0 

𝑛=1

∞

𝑏𝑛 + 𝑖𝑎𝑛
𝑥 + 𝑖𝑦

𝑟𝑟𝑒𝑓

𝑛−1

Fourier expansion of the magnetic field

𝑏𝑛 =
𝐵𝑛
𝐵𝑟𝑒𝑓

∙ 104

𝐵𝜃 = 

𝑛=1

∞
𝑟

𝑟𝑟𝑒𝑓

𝑛−1

𝐵𝑛 cos 𝑛𝜃 − 𝐴𝑛 sin(𝑛𝜃)

𝐵𝑟 = 

𝑛=1

∞
𝑟

𝑟𝑟𝑒𝑓

𝑛−1

𝐵𝑛 sin 𝑛𝜃 + 𝐴𝑛 cos(𝑛𝜃)

𝑎𝑛 =
𝐴𝑛
𝐵𝑟𝑒𝑓

∙ 104

Harmonics

Series expansion of the magnetic field

𝑟𝑟𝑒𝑓 =
2

3
𝑟𝑏𝑜𝑟𝑒
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Criteria

−3 ≤ 𝑏𝑛 ≤ 3 @ 15.5 T

−15 < 𝑏3< 15 @ 1.04 T (induction)

Parameters

• Turns and position of the coil without iron  analytical

• Position of the coils & position of the iron  GA

Legend

↑ increment

↓ reduction

Y-Pusher

↑ ∆𝑦, ∆𝑥

↑ 𝑏3
𝑛 , 𝑏3

𝑖 , 𝑏7
𝑛

↓ 𝑏3
𝑛 − 𝑏3

𝑖

∆𝑦 ∆𝑥
Shim Y-Pad

↓ ∆𝑦

↑ 𝑏3
𝑖

↓ 𝑏7
𝑛, 𝑏3

𝑛

∆𝑦

Midshim

↓ ∆𝑦
↑ 𝑏3

𝑛 , 𝑏7
𝑛

↓ 𝑏3
𝑖

Shim X-Pad

↑ ∆𝑥
↑ 𝑏7

𝑛

↓ 𝑏3
𝑛, 𝑏3

𝑖 ,

∆𝑥
Y-Shim

↓ ∆𝑦

↓ 𝑏3
𝑛 , 𝑏3

𝑖 , 𝑏7
𝑛

Yoke radius

↓ ∆𝑟

↓ 𝑏3
𝑛, 𝑏3

𝑖

↑ 𝑏7
𝑛

X-Pad

↑ ∆𝑥

↑ 𝑏3
𝑛 , 𝑏3

𝑖

↓𝑏7
𝑛

↑ ∆y

↓ 𝑏3
𝑛 , 𝑏3

𝑖

↑ 𝑏7
𝑛
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GA study:

Number of parameters = 9

Forecast number of individuals = 72

Forecast number of generations = 256

Forecast number of simulations = 18432

GA study coil + iron:

Number of parameters = 3 (coils) + 6 (iron)

Forecast number of individuals = 3 + 30

Forecast number of generations = 8 + 64

Forecast number of simulations = 1944

Time per simulation = 115 s

Total time = 24.5 d

Time per simulation = 45 s

Total time = 2.6 d

Procedure : 

1) GA for iron

2) Adaptation of parameters for coils
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F2D2 – FROM BEGINNING TO FINAL DESIGN
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WHEN TO USE?
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GA can be used for :

• Minimization problem

• Maximization problem

When you don’t know how to write down a function (or a part of).

Warnings:

• To be used with a limited number of variables (as a function of your resolution time)

• How to rank the individuals is one of the hardest problem if you look for multiple fitness functions

(ex: minimize both Bpeak and Volume)

• They will always find an approximate solution

• Save all the data and look at them in real time  you can converge faster than you thought
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