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INTERPRETABLE MACHINE LEARNING FOR CLAS12 DATA 
ANALYSIS
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• Introduction

• Feature construction: principle

• Feature construction: practical use in algorithms

→ Trees and ensemble models

→ Generalized Additive Models (GAM)

• CLAS12 data analysis

→ Comparison with classical and neural network approach

→ Transfer learning

OUTLINE
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INTRODUCTION

atom ~10−10m

nucleus 

~10−14m
~10−15m

nucleon

(proton / neutron) 

quark

< 10−18m

Objective: study the proton structure
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• Physics objective: tomography of the nucleon through Generalized

Parton Distributions (GPDs)

→ Correlation between longitudinal momentum and transverse position of the 

partons in the nucleon

INTRODUCTION

• Accessed through exclusive

inelastic processes including

Deeply Virtual Compton

Scattering (DVCS)
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• Jefferson Lab: 10.6 GeV electron beam

• CLAS12 data taking since 2018: hydrogen target

Event classification task: isolate DVCS events (𝑒𝑝 → 𝑒𝑝γ)

INTRODUCTION
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Reconstruction 

algorithm
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• Jefferson Lab: 10.6 GeV electron beam

• CLAS12 data taking since 2018: hydrogen target

Event classification task: isolate DVCS events (𝑒𝑝 → 𝑒𝑝γ)

Machine learning approach to be compared to classical approach

Main background: π0-production events 𝑒𝑝 → 𝑒𝑝π0 → 𝑒𝑝γγ

INTRODUCTION

Detector

responses

4-vectors of 

detected

particles

DVCS

Background

Event 

selection
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE 

MACHINE LEARNING

! The lack of interpretability is controversial

• Interpretability: it is defined as the ability to explain or to provide the 

meaning in understandable terms to a human

• Transparency: a model is considered to be transparent if by itself it is 

understandable. A model can feature different degrees of 

understandability

• Intelligibility (or understandability) denotes the characteristic of a model 

to make a human understand its function – how the model works –

without any need for explaining its internal structure or the algorithmic 

means by which the model processes data internally

Arrieta, Alejandro Barredo, et al. "Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible

AI." Information Fusion (2019).
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE 
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE 

MACHINE LEARNING

Post-hoc explainability methods (feature importance, simplification...)
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE 

MACHINE LEARNING

Make up for the model drawbacks (notably internal representation)
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FEATURE CONSTRUCTION: PRINCIPLE

InTheArt | Noëlie Cherrier
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Motivation: these models do not build a sufficiently complex internal

representation of the data

In machine learning: feature engineering, feature construction

FEATURE CONSTRUCTION

𝑝𝑥
𝑒

θγ

φτ

𝑝𝑇
𝑙𝑒𝑝

𝑝𝑧
𝑒 + 𝑝𝑧

𝑝
+ 𝑝𝑧

γ1

cos(θ𝑙𝑒𝑝 − θτ)

cos(φ𝑙𝑒𝑝 − φτ)

𝑎𝑛𝑔𝑙𝑒 𝑝γ1 , 𝑝𝛾1 + 𝑝𝛾2

Base variables Discriminative and intelligible features
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Motivation: these models do not build a sufficiently complex internal

representation of the data

Constrained Genetic Programming: evolve a population of high-level

feature candidates

InTheArt | Noëlie Cherrier

FEATURE CONSTRUCTION

+

+𝑝𝑇
𝑒

𝑝𝑇
𝑝

𝑝𝑇
γ1

Feature candidate example

→ Nodes are mathematical operators

→ Leaves are base variables

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for 

Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.
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Motivation: these models do not build a sufficiently complex internal

representation of the data

Constrained Genetic Programming: evolve a population of high-level

feature candidates
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FEATURE CONSTRUCTION

+

+𝑝𝑇
𝑒

𝑝𝑇
𝑝

θγ1

Feature candidate example

→ Nodes are mathematical operators

→ Leaves are base variables

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for 

Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.
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Grammar-guided Genetic Programming

Ratle, A., & Sebag, M. (2001). Grammar-guided genetic programming and dimensional consistency: application to non-

parametric identification in mechanics. Applied Soft Computing, 1(1), 105-118.

FEATURE CONSTRUCTION

<start> ::= <E> | <A> | <F>

<E> ::= <E> + <E> | <E> - <E> | <E> * <F>

| <E> / <F> | sqrt(<E2>) | <termE>

<A> ::= <A> + <A> | <A> - <A> | acos(<F>)

| asin(<F>) | atan(<F>) | <termA>

<F> ::= <F> + <F> | <F> - <F> | <F> * <F>

| <F> / <F> | <E> / <E> | <A> / <A>

| cos(<A>) | sin(<A>) | tan(<A>)

| <termF>

<E2> ::= <E2> + <E2> | <E2> - <E2>

| <E> * <E> | <E2> * <F> | <E2> / <F>

| square(<E>) | <termE2>
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FEATURE CONSTRUCTION

Generation 𝑛

Offspring
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FEATURE CONSTRUCTION

Mutation

Crossover
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FEATURE CONSTRUCTION

Generation 𝑛

Offspring
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FEATURE CONSTRUCTION

Evaluation and selection

Generation 𝑛

Offspring

Generation 𝑛 + 1
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Different FC methods, main difference = how to evaluate the feature candidates

Filter, wrapper, or embedded methods

FEATURE CONSTRUCTION

prior FC

(before learning the ML model)

Filter
Information gain, Gini index, ... of the 

candidate feature

Wrapper

Inclusion into the initial list:

𝑝𝑇
𝑒 , ϴ𝑒 , φ𝑒 , 𝑝𝑇

𝑝
, ϴ𝑝, φ𝑝, etc., 𝑝𝑇

𝑒 + 𝑝𝑇
𝑝
+ 𝑝𝑇

γ1

and training of a ML algorithm
(the fitness of the candidate is the test score of 

the ML algorithm)

+

+𝑝𝑇
𝑒

𝑝𝑇
𝑝

𝑝𝑇
γ1

𝑝𝑇
𝑒 + 𝑝𝑇

𝑝
+ 𝑝𝑇

γ1

Embedded
Build features during the induction process, 

usually with filter fitness functions

• Decision trees and ensemble methods

• Generalized Additive Models
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FEATURE CONSTRUCTION: PRACTICAL USE IN ML 
ALGORITHMS

InTheArt | Noëlie Cherrier
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PRIOR FEATURE CONSTRUCTION

Initial features

𝑝𝑇
τ , ϴτ, φτ, 𝑝𝑇

𝑙𝑒𝑝
, ϴ𝑙𝑒𝑝, φ𝑙𝑒𝑝, etc.

Construction of one or several

new features

𝑓𝑛𝑒𝑤 =

Inclusion into the initial list

𝑝𝑇
τ , ϴτ, φτ, 𝑝𝑇

𝑙𝑒𝑝
, ϴ𝑙𝑒𝑝, φ𝑙𝑒𝑝, etc., 𝒇𝒏𝒆𝒘

Training and evaluation

by a ML classifier

InTheArt | Noëlie Cherrier

For the experiments:

C4.5 decision tree
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PRIOR FEATURE CONSTRUCTION
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EMBEDDED FEATURE CONSTRUCTION: IN TREES

𝑝𝑥
𝑒

θγ

φτ

𝑝𝑇
𝑙𝑒𝑝

𝑝𝑧
𝑒 + 𝑝𝑧

𝑝
+ 𝑝𝑧

γ1

cos(θ𝑙𝑒𝑝 − θτ)

cos(φ𝑙𝑒𝑝 − φτ)

𝑎𝑛𝑔𝑙𝑒 𝑝γ1 , 𝑝𝛾1 + 𝑝𝛾2

Features

in the 

dataset

Discriminative and 

intelligible features

Constrained Genetic

Programming

embedded into tree

node induction
Fitness: tree splitting

criterion (information 

gain, Gini index, ...)

 Faster construction
(‘‘filter’’ methods are faster to evaluate

than training a whole ML model)

Cherrier, N., Defurne, M., Poli, J. P., & Sabatié, F. (2019). 

Embedded Constrained Feature Construction for High-

Energy Physics Data Classification. In Workshop on 

Machine Learning for the Physical Sciences, NeurIPS

2019.
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EMBEDDED FEATURE CONSTRUCTION: IN TREES

‘‘Weak’’ learner in ensemble methods: decision tree with embedded feature

construction
ex: AdaBoost, gradient boosting, XGBoost, etc.
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Generalized Linear Models (GLM) :

𝑔 ො𝑦 = β0 + β1𝑥1 + …+ β𝑑𝑥𝑑

𝑔 ො𝑦 = ො𝑦 for regression, 𝑔 ො𝑦 = ln(
ො𝑦

1− ො𝑦
) for classification

GENERALIZED ADDITIVE MODELS (GAM)
ො𝑦 predicted output

𝑦 true output

𝑥1, ..., 𝑥𝑑 input variables
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Generalized Linear Models (GLM) :

𝑔 ො𝑦 = β0 + β1𝑥1 + …+ β𝑑𝑥𝑑

𝑔 ො𝑦 = ො𝑦 for regression, 𝑔 ො𝑦 = ln(
ො𝑦

1− ො𝑦
) for classification

Generalized Additive Models (GAM) :

𝑔 ො𝑦 = β0 + 𝑓1(𝑥1) + …+ 𝑓𝑑(𝑥𝑑)

GENERALIZED ADDITIVE MODELS (GAM)

Hastie, T. J. (1986). Generalized additive models. In Statistical models in S (pp. 249-307). Routledge.

Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.

+ + + ...

ො𝑦 predicted output

𝑦 true output

𝑥1, ..., 𝑥𝑑 input variables

𝑓1(𝑥1) 𝑓2(𝑥2) 𝑓3(𝑥3)
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

EMBEDDED FEATURE CONSTRUCTION: IN GAM
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

EMBEDDED FEATURE CONSTRUCTION: IN GAM
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

1) Compute β0 = ln
𝑝0

1−𝑝0
to form the 1st model 𝑔(ො𝑦) = β0. 

The residual is 𝑟 = 𝑦 − ො𝑦 = 𝑦 − 𝑝0 (𝑝0 proportion of the majority class)

EMBEDDED FEATURE CONSTRUCTION: IN GAM
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

1) Compute β0 = ln
𝑝0

1−𝑝0
to form the 1st model 𝑔(ො𝑦) = β0. 

The residual is 𝑟 = 𝑦 − ො𝑦 = 𝑦 − 𝑝0 (𝑝0 proportion of the majority class)

2) Build one feature 𝑥1 discriminative wrt the residual

Fitness function for the Genetic Programming algorithm:

• Shallow tree (maximum 4 leaves)

• Feature fitness: RMS error of the inducted tree with the residual

EMBEDDED FEATURE CONSTRUCTION: IN GAM
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3) Fit a shape function 𝑓1 𝑥1 to the residual

EMBEDDED FEATURE CONSTRUCTION: IN GAM
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

1) Compute β0 = ln
𝑝0

1−𝑝0
to form the 1st model 𝑔(ො𝑦) = β0. 

The residual is 𝑟 = 𝑦 − ො𝑦 = 𝑦 − 𝑝0 (𝑝0 proportion of the majority class)

2) Build one feature 𝑥1 discriminative wrt the residual

Fitness function for the Genetic Programming algorithm:

• Shallow tree (maximum 4 leaves)

• Feature fitness: RMS error of the inducted tree with the residual

3) Fit a shape function 𝑓1 𝑥1 to the residual

4) Compute the new model: 𝑔 ො𝑦 = 𝑔 ො𝑦 + 𝑓1 𝑥1 and the new residual 𝑟 = 𝑦 − ො𝑦, 

and go back to step 2

EMBEDDED FEATURE CONSTRUCTION: IN GAM
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RESULTS

Baselines:

Neural network (2 hidden layers of size 100) 0.7012 ± 0,0062

Linear SVM 0.6911

C4.5 with feature construction 0.718 ± 0,020 
(15 nodes using feature

construction)

AdaBoost with feature construction 0.7280 ± 0.0063
(50 trees of 1 node each with

feature construction)

Gradient Boosting with feature construction 0.7446 ± 0.0071
(100 trees of 7 nodes each with

feature construction)
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RESULTS

𝑝𝑧
𝑒 + 𝑝𝑧

𝑝
+ 𝑝𝑧

γ1 𝑎𝑛𝑔𝑙𝑒 𝑝γ2 , 𝑝γ1 + 𝑝γ2

+ +    ...

Example of a model (the lower the 𝑦 value, the higher the probability to have a 

DVCS event):
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CLAS12 DATA ANALYSIS

InTheArt | Noëlie Cherrier
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Classical DVCS event selection

−0,05 𝐺𝑒𝑉² ≤ 𝑀𝑀²𝑒𝑝→𝑒𝑝γ𝑋 ≤ 0,05 𝐺𝑒𝑉²

0,1 𝐺𝑒𝑉 ≤ 𝑀𝑀𝑒𝑝→𝑒γ𝑋 ≤ 1,7 𝐺𝑒𝑉

−1 𝐺𝑒𝑉 ≤ 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦 ≤ 2 𝐺𝑒𝑉

𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑇 (𝑒𝑝 → 𝑒𝑝𝑋) ≤ 0,4 𝐺𝑒𝑉

𝑐𝑜𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 ≤ 4°

COMPARISON WITH OTHER ANALYSIS APPROACHES

Neural network approach

2 hidden layers of size (20, 30)

11 high-level input features

InTheArt | Noëlie Cherrier
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COMPARISON WITH OTHER ANALYSIS APPROACHES

Y axis: percentage of selected DVCS events among all existing DVCS in simulated data

X axis: percentage of Pi0 events still present in the selected subset
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COMPARISON WITH OTHER ANALYSIS APPROACHES

Y axis: percentage of selected DVCS events among all existing DVCS in simulated data

X axis: percentage of Pi0 events still present in the selected subset

! Pi0 subtraction method
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COMPARISON WITH OTHER ANALYSIS APPROACHES

−
𝑡

𝑄2 ≥ 0,25
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COMPARISON WITH OTHER ANALYSIS APPROACHES

−
𝑡

𝑄2 < 0,25
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Issues:

• Shifts due to detector resolutions and calibrations

• Different data distributions (due to cross sections)

• New classes present in real data but not in simulations (other physics

processes, accidental background, ...)

First approach from the neural network track:

TRANSFER LEARNING

Ganin, Y., & Lempitsky, V. (2014). Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495

Baalouch, M., Defurne, M., Poli, J. P., & Cherrier, N. (2019). Sim-to-Real Domain Adaptation For High Energy Physics. In Workshop on Machine 

Learning for the Physical Sciences, NeurIPS 2019.

ℒ = ℒ𝑦 − λ ℒ𝑑
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Two approaches to transfer learning or domain adaptation for interpretable ML 

models:

• Modify thresholds and leaf weights by learning a transformation from source to 

target data

• Find a domain-invariant feature representation

Ideas:

• Select a subset of data containing only π0-production events and learn the 

transformation on this subset

• Weight real events to ‘‘remove’’ the influence of cross-sections and get

distributions comparable to those of simulated data

Still work in progress!

TRANSFER LEARNING
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• Analysis of CLAS12 data to select DVCS events

• Feature construction principle: get new discriminative high-level variables

• Implementation in several ‘‘interpretable’’ algorithms

• Comparison with other analysis methods

• Still work to do with transfer learning to be able to apply all of this on real data

CONCLUSION

Thank you!


