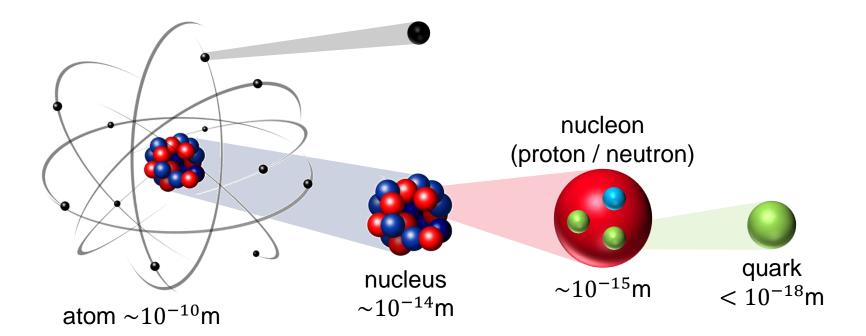


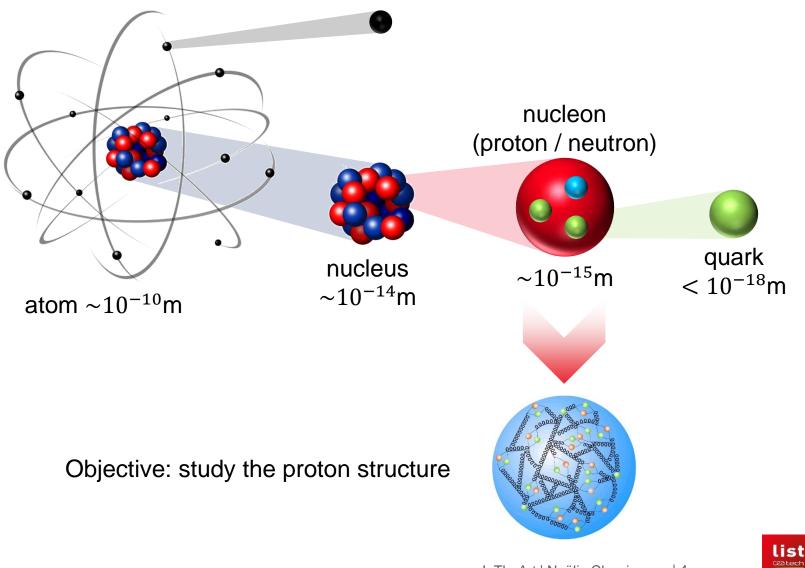
INTERPRETABLE MACHINE LEARNING FOR CLAS12 DATA ANALYSIS

InTheArt | Noëlie Cherrier

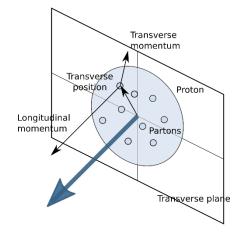
OUTLINE

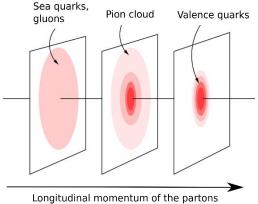
- Introduction
- Feature construction: principle
- Feature construction: practical use in algorithms
 - \rightarrow Trees and ensemble models
 - \rightarrow Generalized Additive Models (GAM)
- CLAS12 data analysis
 - \rightarrow Comparison with classical and neural network approach
 - \rightarrow Transfer learning



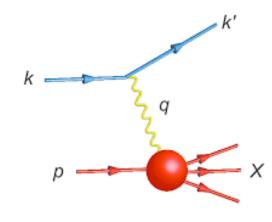


- Physics objective: tomography of the nucleon through Generalized Parton Distributions (GPDs)
 - → Correlation between longitudinal momentum and transverse position of the partons in the nucleon

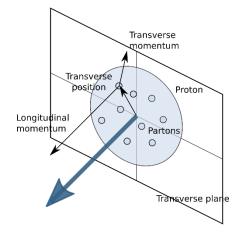




 Accessed through exclusive inelastic processes including Deeply Virtual Compton Scattering (DVCS)



- Physics objective: tomography of the nucleon through Generalized Parton Distributions (GPDs)
 - → Correlation between longitudinal momentum and transverse position of the partons in the nucleon

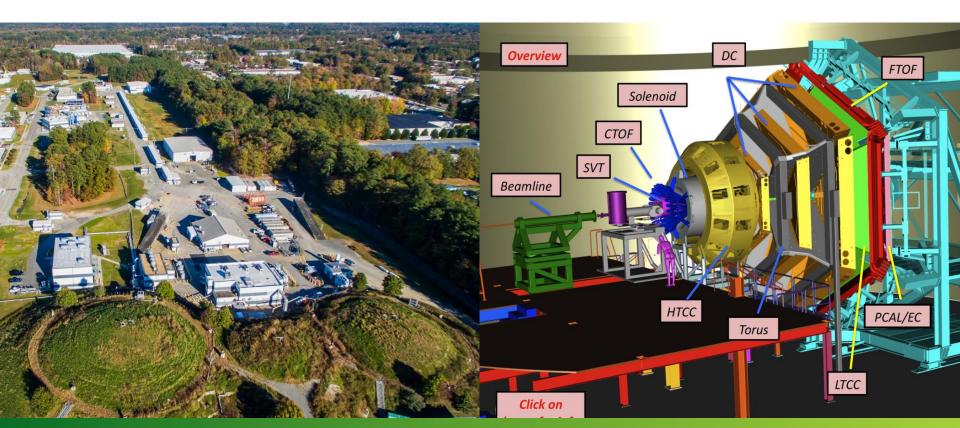




 Accessed through exclusive inelastic processes including Deeply Virtual Compton Scattering (DVCS)

- Jefferson Lab: 10.6 GeV electron beam
- CLAS12 data taking since 2018: hydrogen target

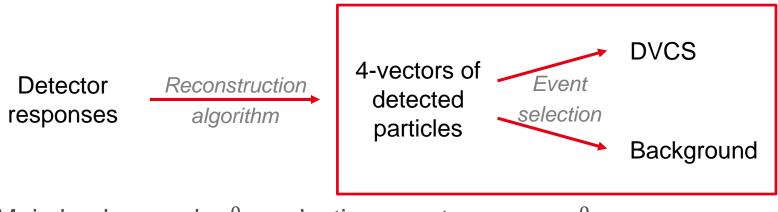
Event classification task: isolate DVCS events $(ep \rightarrow ep\gamma)$



- Jefferson Lab: 10.6 GeV electron beam
- CLAS12 data taking since 2018: hydrogen target

Event classification task: isolate DVCS events $(ep \rightarrow ep\gamma)$

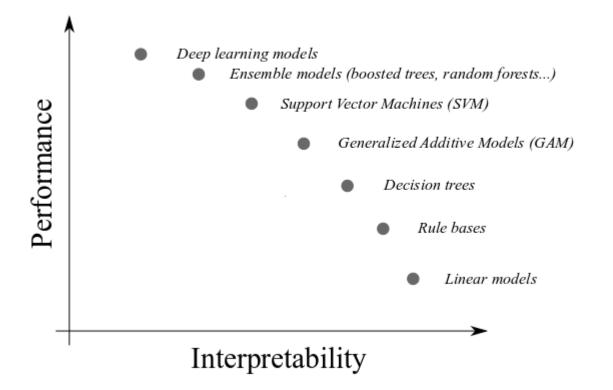
Machine learning approach to be compared to classical approach



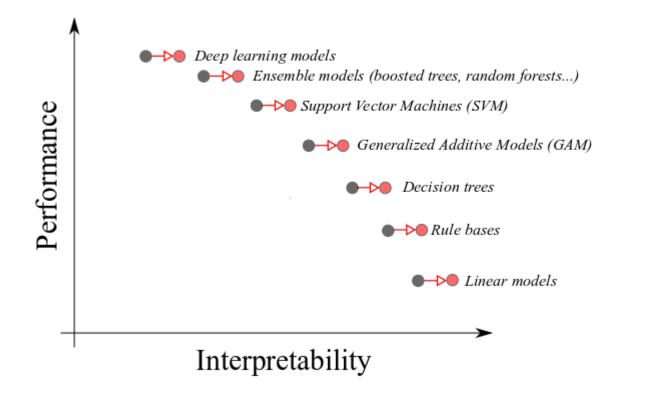
Main background: π^0 -production events $ep \rightarrow ep\pi^0 \rightarrow ep\gamma\gamma$

- Interpretability: it is defined as the ability to explain or to provide the meaning in understandable terms to a human
- **Transparency**: a model is considered to be transparent if by itself it is understandable. A model can feature different degrees of understandability
- Intelligibility (or understandability) denotes the characteristic of a model to make a human understand its function – how the model works – without any need for explaining its internal structure or the algorithmic means by which the model processes data internally

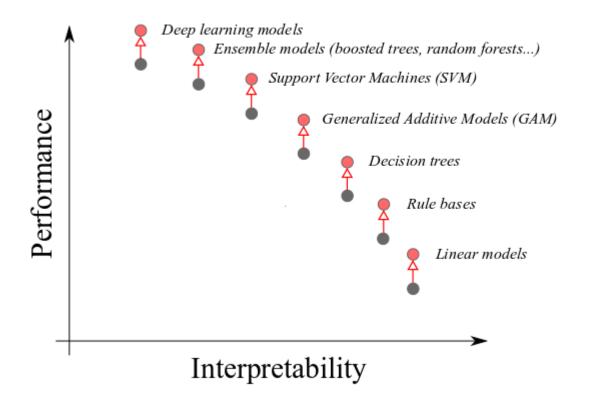
Arrieta, Alejandro Barredo, et al. "Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI." *Information Fusion* (2019).



Post-hoc explainability methods (feature importance, simplification...)

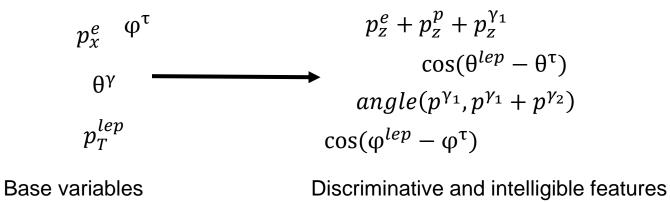


Make up for the model drawbacks (notably internal representation)



FEATURE CONSTRUCTION: PRINCIPLE

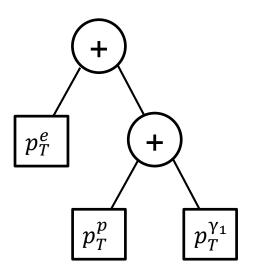
Motivation: these models do not build a sufficiently complex internal representation of the data



In machine learning: feature engineering, feature construction

Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level feature candidates



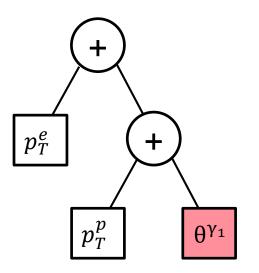
Feature candidate example

- \rightarrow Nodes are mathematical operators
- \rightarrow Leaves are base variables

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.

Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level feature candidates

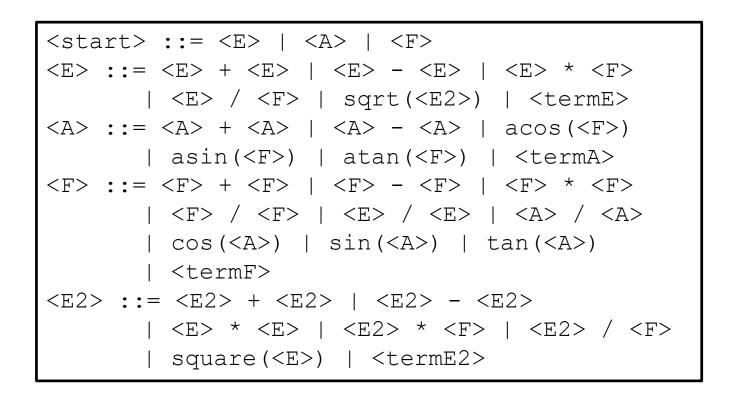


Feature candidate example

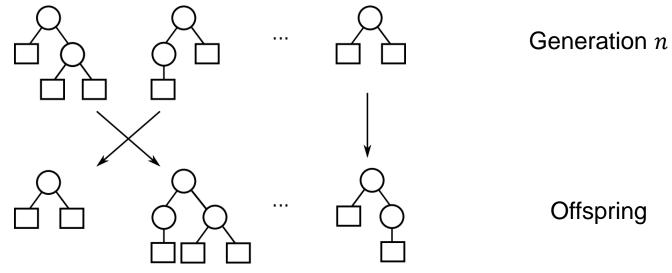
- \rightarrow Nodes are mathematical operators
- \rightarrow Leaves are base variables

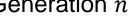
Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.

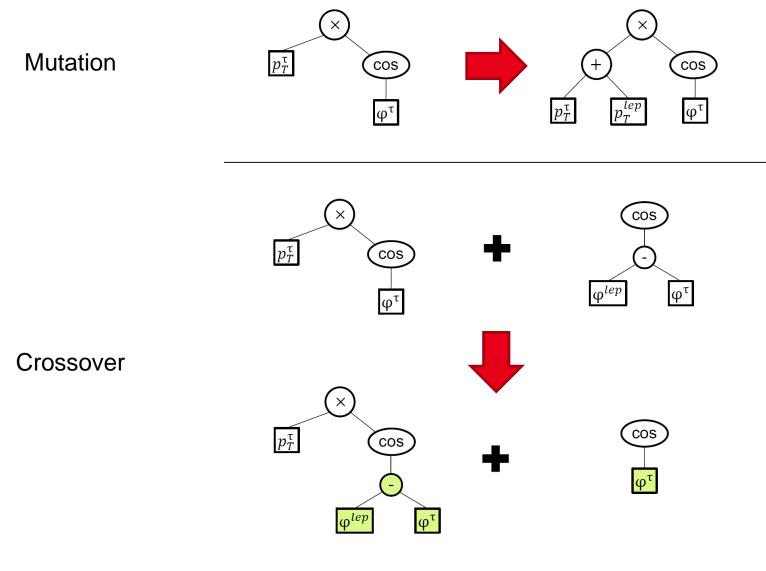
Grammar-guided Genetic Programming



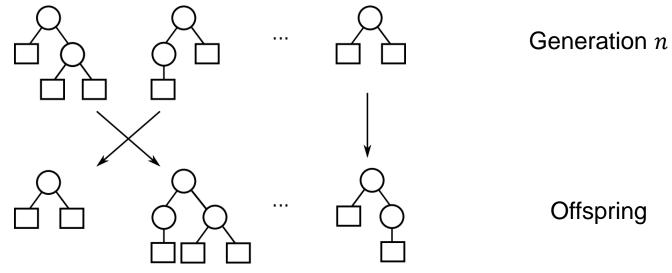
Ratle, A., & Sebag, M. (2001). Grammar-guided genetic programming and dimensional consistency: application to non-parametric identification in mechanics. Applied Soft Computing, 1(1), 105-118.

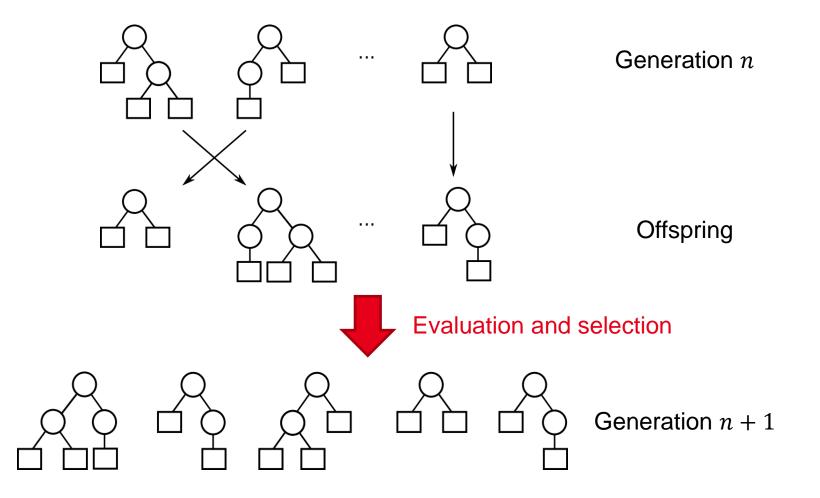






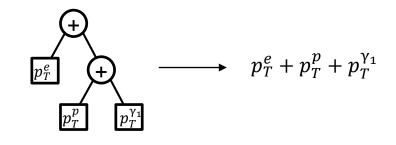
List CR2tech





Different FC methods, main difference = how to evaluate the feature candidates Filter, wrapper, or embedded methods

prior FC (before learning the ML model)



<u>Filter</u> Information gain, Gini index, ... of the candidate feature

> Wrapper Inclusion into the initial list:

 $p_T^e, \Theta^e, \varphi^e, p_T^p, \Theta^p, \varphi^p, \text{ etc.}, p_T^e + p_T^p + p_T^{\gamma_1}$

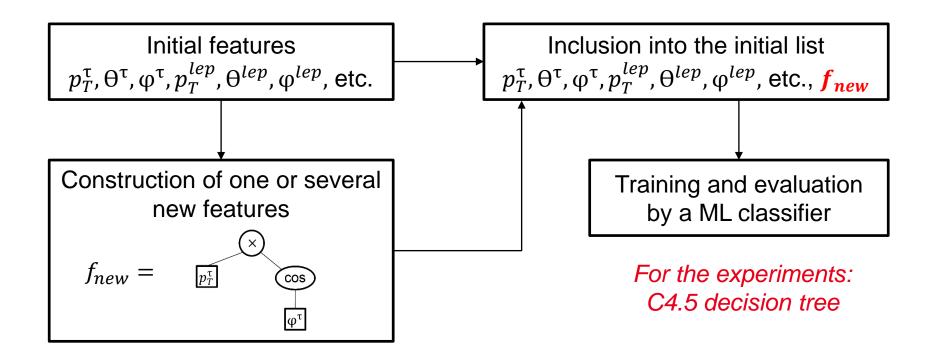
and training of a ML algorithm (the fitness of the candidate is the test score of the ML algorithm) Embedded

Build features during the induction process, usually with filter fitness functions

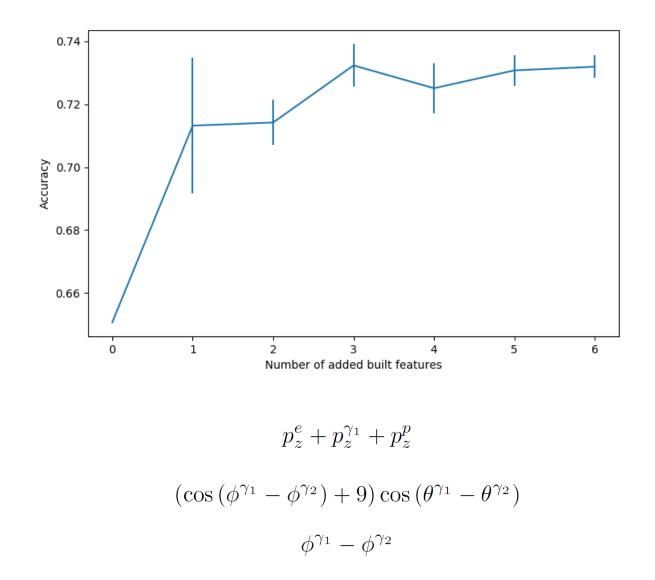
- Decision trees and ensemble methods
- Generalized Additive Models

FEATURE CONSTRUCTION: PRACTICAL USE IN ML ALGORITHMS

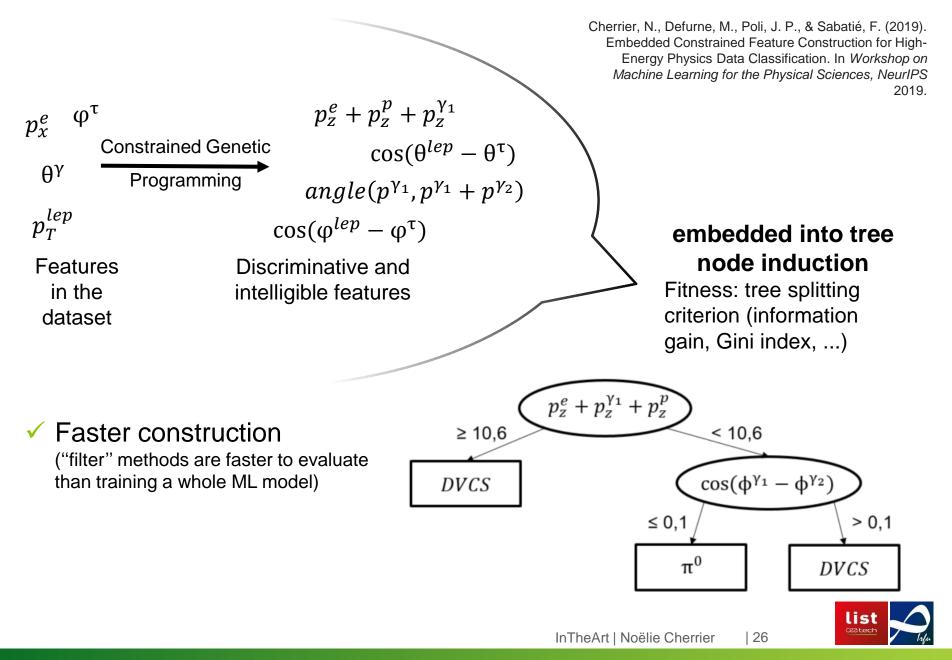
PRIOR FEATURE CONSTRUCTION



PRIOR FEATURE CONSTRUCTION



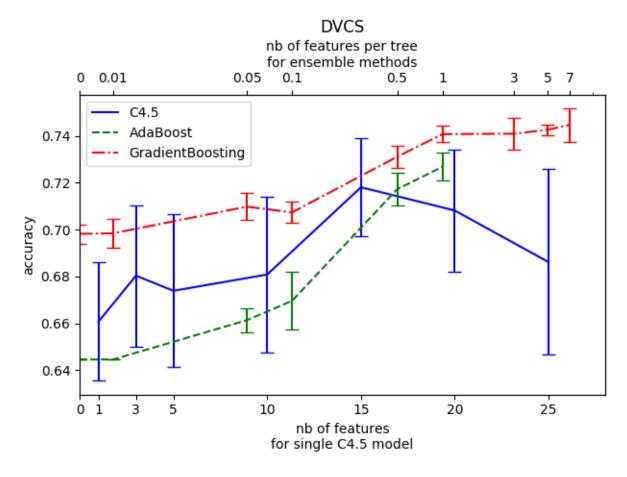
EMBEDDED FEATURE CONSTRUCTION: IN TREES



EMBEDDED FEATURE CONSTRUCTION: IN TREES

"Weak" learner in ensemble methods: decision tree with embedded feature construction

ex: AdaBoost, gradient boosting, XGBoost, etc.



GENERALIZED ADDITIVE MODELS (GAM)

Generalized Linear Models (GLM) :

 $g(\hat{y}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$ $g(\hat{y}) = \hat{y} \text{ for regression, } g(\hat{y}) = \ln(\frac{\hat{y}}{1-\hat{y}}) \text{ for classification}$

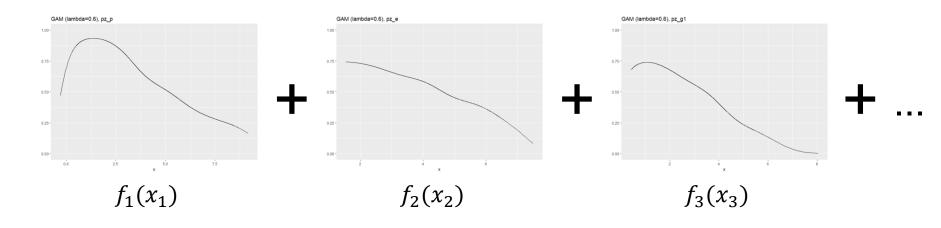
 \hat{y} predicted output y true output $x_1, ..., x_d$ input variables

GENERALIZED ADDITIVE MODELS (GAM)

Generalized Linear Models (GLM) : $g(\hat{y}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$ $g(\hat{y}) = \hat{y} \text{ for regression, } g(\hat{y}) = \ln(\frac{\hat{y}}{1-\hat{y}}) \text{ for classification}$ \hat{y} predicted output y true output $x_1, ..., x_d$ input variables

Generalized Additive Models (GAM) :

 $g(\hat{y}) = \beta_0 + f_1(x_1) + \dots + f_d(x_d)$



Hastie, T. J. (1986). Generalized additive models. In *Statistical models in S* (pp. 249-307). Routledge. Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. *ACM SIGKDD 2013*.

Idea: build one feature at a time, associated with one term of the GAM \rightarrow gradient boosting

InTheArt | Noëlie Cherrier | 30

<u>Idea</u>: build one feature at a time, associated with one term of the GAM \rightarrow gradient boosting

<u>Objective function</u>: minimize the cross entropy $-y \ln(\hat{y}) - (1-y) \ln(1-\hat{y})$

<u>Idea</u>: build one feature at a time, associated with one term of the GAM \rightarrow gradient boosting

<u>Objective function</u>: minimize the cross entropy $-y \ln(\hat{y}) - (1-y) \ln(1-\hat{y})$

1) Compute $\beta_0 = \ln\left(\frac{p_0}{1-p_0}\right)$ to form the 1st model $g(\hat{y}) = \beta_0$. The residual is $r = y - \hat{y} = y - p_0$ (p_0 proportion of the majority class)

<u>Idea</u>: build one feature at a time, associated with one term of the GAM \rightarrow gradient boosting

<u>Objective function</u>: minimize the cross entropy $-y \ln(\hat{y}) - (1-y) \ln(1-\hat{y})$

1) Compute $\beta_0 = \ln\left(\frac{p_0}{1-p_0}\right)$ to form the 1st model $g(\hat{y}) = \beta_0$. The residual is $r = y - \hat{y} = y - p_0$ (p_0 proportion of the majority class)

2) Build one feature x_1 discriminative wrt the residual

Fitness function for the Genetic Programming algorithm:

- Shallow tree (maximum 4 leaves)
- Feature fitness: RMS error of the inducted tree with the residual

<u>Idea</u>: build one feature at a time, associated with one term of the GAM \rightarrow gradient boosting

<u>Objective function</u>: minimize the cross entropy $-y \ln(\hat{y}) - (1-y) \ln(1-\hat{y})$

1) Compute $\beta_0 = \ln\left(\frac{p_0}{1-p_0}\right)$ to form the 1st model $g(\hat{y}) = \beta_0$. The residual is $r = y - \hat{y} = y - p_0$ (p_0 proportion of the majority class)

2) Build one feature x_1 discriminative wrt the residual

Fitness function for the Genetic Programming algorithm:

- Shallow tree (maximum 4 leaves)
- Feature fitness: RMS error of the inducted tree with the residual

3) Fit a shape function $f_1(x_1)$ to the residual

<u>Idea</u>: build one feature at a time, associated with one term of the GAM \rightarrow gradient boosting

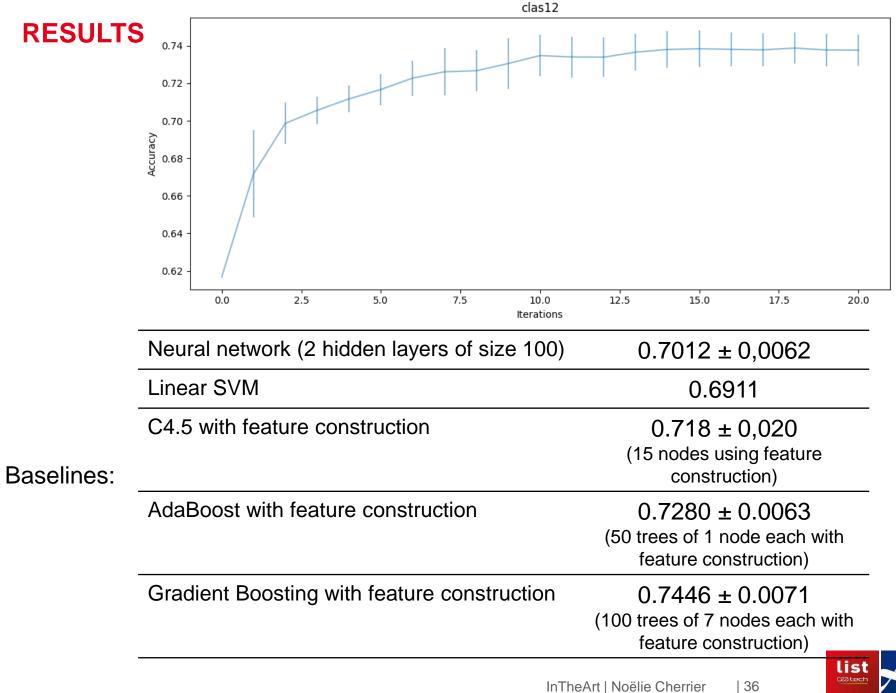
<u>Objective function</u>: minimize the cross entropy $-y \ln(\hat{y}) - (1-y) \ln(1-\hat{y})$

1) Compute $\beta_0 = \ln\left(\frac{p_0}{1-p_0}\right)$ to form the 1st model $g(\hat{y}) = \beta_0$. The residual is $r = y - \hat{y} = y - p_0$ (p_0 proportion of the majority class)

2) Build one feature x_1 discriminative wrt the residual

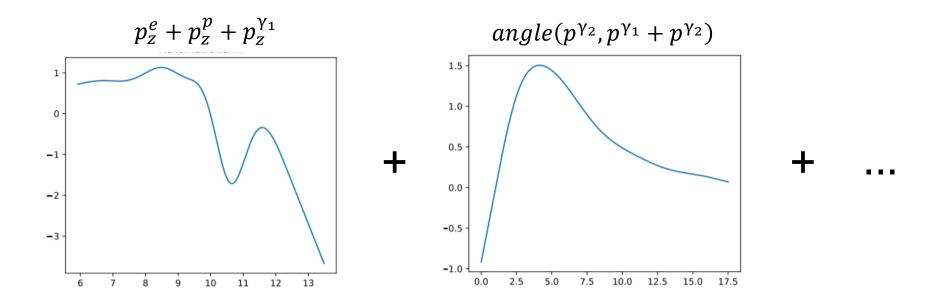
Fitness function for the Genetic Programming algorithm:

- Shallow tree (maximum 4 leaves)
- Feature fitness: RMS error of the inducted tree with the residual
- 3) Fit a shape function $f_1(x_1)$ to the residual
- 4) Compute the new model: $g(\hat{y}) = g(\hat{y}) + f_1(x_1)$ and the new residual $r = y \hat{y}$, and go back to step 2



RESULTS

Example of a model (the lower the *y* value, the higher the probability to have a DVCS event):

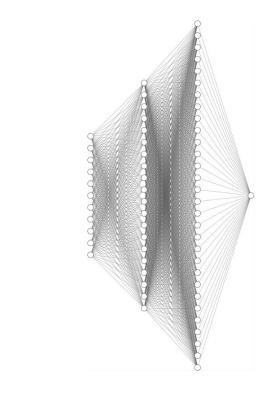


CLAS12 DATA ANALYSIS

Classical DVCS event selection

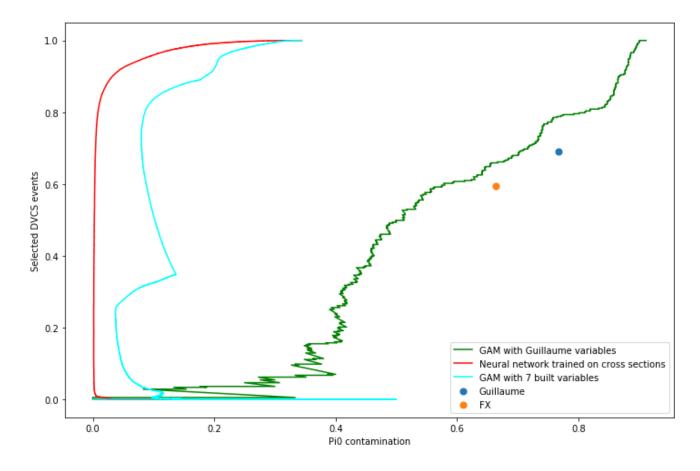
 $\begin{aligned} -0,05 \ GeV^2 &\leq MM^2_{ep \to ep \gamma X} \leq 0,05 \ GeV^2 \\ 0,1 \ GeV &\leq MM_{ep \to e \gamma X} \leq 1,7 \ GeV \\ -1 \ GeV &\leq missing \ energy \leq 2 \ GeV \\ missing \ p_T \ (ep \to ep X) \leq 0,4 \ GeV \\ cone \ angle &\leq 4^\circ \end{aligned}$

Neural network approach



2 hidden layers of size (20, 30) 11 high-level input features

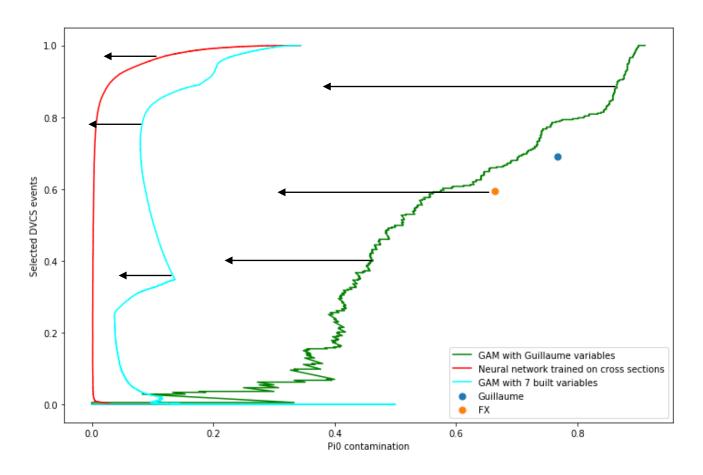
Y axis: percentage of selected DVCS events among all existing DVCS in simulated data X axis: percentage of Pi0 events still present in the selected subset

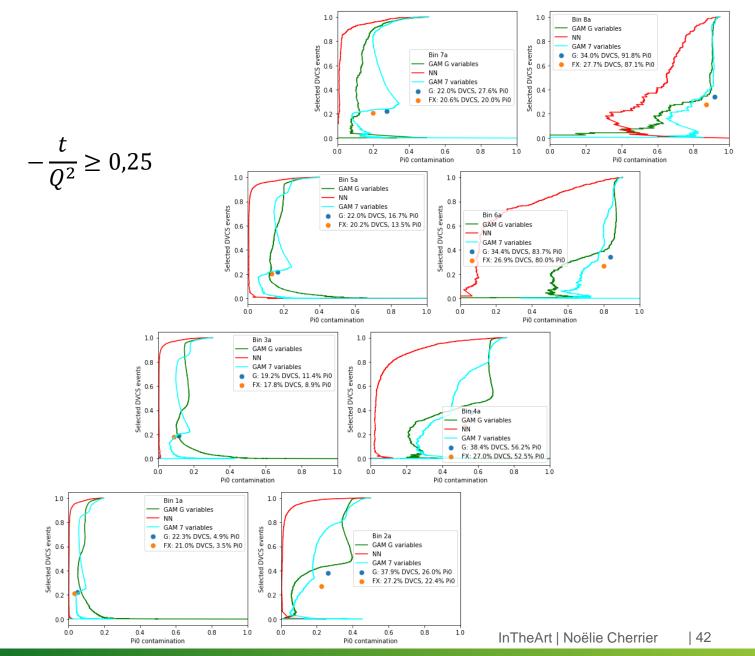


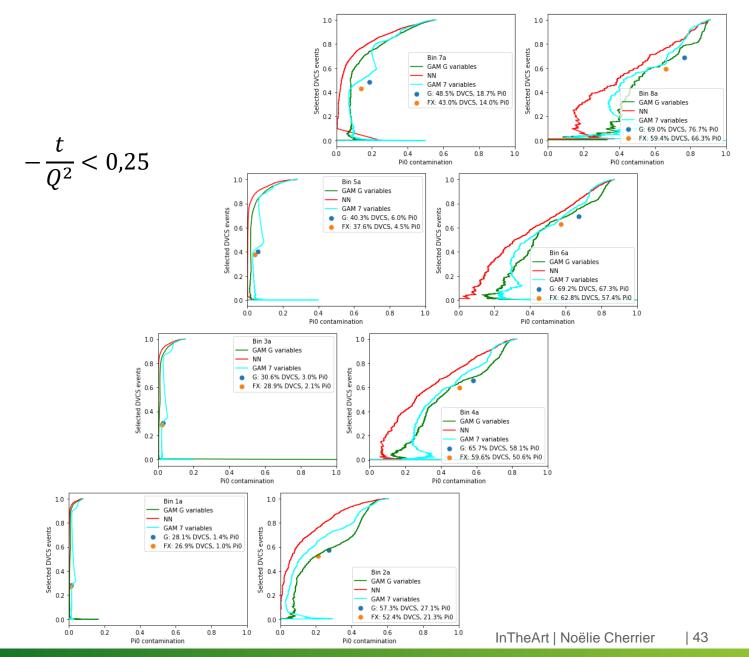
Y axis: percentage of selected DVCS events among all existing DVCS in simulated data X axis: percentage of Pi0 events still present in the selected subset

 $\underline{\wedge}$

Pi0 subtraction method





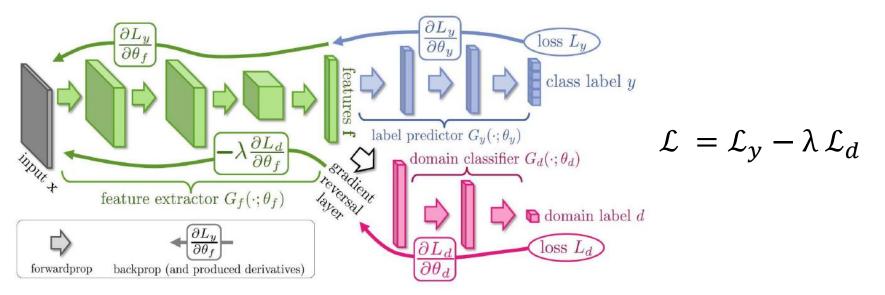


TRANSFER LEARNING

Issues:

- Shifts due to detector resolutions and calibrations
- Different data distributions (due to cross sections)
- New classes present in real data but not in simulations (other physics processes, accidental background, ...)

First approach from the neural network track:



Ganin, Y., & Lempitsky, V. (2014). Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495

Baalouch, M., Defurne, M., Poli, J. P., & Cherrier, N. (2019). Sim-to-Real Domain Adaptation For High Energy Physics. In Workshop on Machine Learning for the Physical Sciences, NeurIPS 2019.

TRANSFER LEARNING

Two approaches to transfer learning or domain adaptation for interpretable ML models:

- Modify thresholds and leaf weights by learning a transformation from source to target data
- Find a domain-invariant feature representation

Ideas:

- Select a subset of data containing only π_0 -production events and learn the transformation on this subset
- Weight real events to "remove" the influence of cross-sections and get distributions comparable to those of simulated data

Still work in progress!

CONCLUSION

- Analysis of CLAS12 data to select DVCS events
- Feature construction principle: get new discriminative high-level variables
- Implementation in several "interpretable" algorithms
- Comparison with other analysis methods
- Still work to do with transfer learning to be able to apply all of this on real data

Thank you!

