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OUTLINE

Introduction

Feature construction: principle

Feature construction: practical use in algorithms

— Trees and ensemble models

— Generalized Additive Models (GAM)

CLAS12 data analysis

— Comparison with classical and neural network approach

— Transfer learning
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INTRODUCTION
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INTRODUCTION

nucleon
(proton / neutron)

o

guark
<107 ¥m

nucleus ~10-15m
atom ~10~1%m ~107"*m

Objective: study the proton structure
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INTRODUCTION

Physics objective: tomography of the nucleon through Generalized
Parton Distributions (GPDs)

— Correlation between longitudinal momentum and transverse position of the
partons in the nucleon
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* Accessed through exclusive /
inelastic processes including o
Deeply Virtual Compton q

Scattering (DVCS)
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INTRODUCTION

* Jefferson Lab: 10.6 GeV electron beam
* CLAS12 data taking since 2018: hydrogen target

Event classification task: isolate DVCS events (ep — epy)

Solenoid




INTRODUCTION

* Jefferson Lab: 10.6 GeV electron beam
* CLAS12 data taking since 2018: hydrogen target

Event classification task: isolate DVCS events (ep — epy)

Machine learning approach to be compared to classical approach

4 f DVCS
Detector Reconstruction "VECtors o Event
responses lgorith ] detected selection
P igorithm particles \
Background

Main background: m°-production events ep — epnt® = epyy
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE
MACHINE LEARNING

* Interpretability: it is defined as the ability to explain or to provide the
meaning in understandable terms to a human

* Transparency. a model is considered to be transparent if by itself it is
understandable. A model can feature different degrees of
understandability

* Intelligibility (or understandability) denotes the characteristic of a model
to make a human understand its function — how the model works —
without any need for explaining its internal structure or the algorithmic
means by which the model processes data internally

AThe lack of interpretability is controversial

Arrieta, Alejandro Barredo, et al. "Explainable Artificial Intelligence (XAl): Concepts, Taxonomies, Opportunities and Challenges toward Responsible
Al." Information Fusion (2019).
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE
MACHINE LEARNING

Performance

[ ] Deep learning models
®  Ensemble models (boosted trees, random forests...)

®  Support Vector Machines (SVM)

[ ] Generalized Additive Models (GAM)
[ ] Dectsion trees

9 Rule bases

®  Linear models

Interpretability
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE
MACHINE LEARNING

Post-hoc explainability methods (feature importance, simplification...)

A

OO Deep learning models
@@ Ensemble models (boosted trees, random forests...)

@0 Support Vector Machines (SVM)

O30 Generalized Additive Models (GAM)

@0 Decision trecs

@010 Rule bases

Performance

@00 Lincar models

Interpretability
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE
MACHINE LEARNING

Make up for the model drawbacks (notably internal representation)

A Deep learning models
E Ensemble models (boosted trees, random forests...)

f Support Vector Machines (SVM)
E Generalized Additive Models { GAM)

% Decision trees

E Rule bases

f Linear models

Performance

-

Interpretability
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FEATURE CONSTRUCTION: PRINCIPLE
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FEATURE CONSTRUCTION

Motivation: these models do not build a sufficiently complex internal
representation of the data

pe @ g +p; +p,"
cos(0'P — QT
o . ( )
angle(p¥, p¥* + p'?)
l
pr cos(@'P — ")
Base variables Discriminative and intelligible features

In machine learning: feature engineering, feature construction

InTheArt | Noélie Cherrier | 14
B



FEATURE CONSTRUCTION

Motivation: these models do not build a sufficiently complex internal
representation of the data

Constrained Genetic Programming: evolve a population of high-level
feature candidates

/ Feature candidate example
ps — Nodes are mathematical operators
— Leaves are base variables

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for

Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.
list ./
katech '
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FEATURE CONSTRUCTION

Motivation: these models do not build a sufficiently complex internal
representation of the data

Constrained Genetic Programming: evolve a population of high-level
feature candidates

/ Feature candidate example
ps — Nodes are mathematical operators
— Leaves are base variables

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for

Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.
list ./
katech '
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FEATURE CONSTRUCTION

Grammar-guided Genetic Programming

<start> ::= <E> | <A> | <F>

<E> ::= <E> + <E> | <E> - <E> | <E> * <F>
| <E> / <F> | sqgrt (<E2>) | <termkE>

<A> := <A> + <A> | <A> - <A> | acos (<F>)
| asin (<F>) | atan (<F>) | <termA>

<F> 1= <F> + <F> | <F> - <F> | <F> * <F>
| <F> / <F> | <E> / <E> | <A> / <A>
| cos(<A>) | sin(<A>) | tan (<A>)
| <termB>

<E2> = <E2> + <E2Z2> | <E2> - <E2>
| <E> * <E> | <E2> * <F> | <E2> / <F>
| square (KE>) | <termE2>

Ratle, A., & Sebag, M. (2001). Grammar-guided genetic programming and dimensional consistency: application to non-
parametric identification in mechanics. Applied Soft Computing, 1(1), 105-118.
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FEATURE CONSTRUCTION

& Generation n

X |
DRD % Dﬂé Offspring
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FEATURE CONSTRUCTION

© ©
Mutation pf (cos) » (cos)
(p‘[

pk pi? @"

= (plep @

Crossover ‘

(Plep )
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FEATURE CONSTRUCTION

& Generation n

X |
DRD % Dﬂé Offspring
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FEATURE CONSTRUCTION

& Generation n

X |
IZIRI‘__I ﬁ% Dﬂé Offspring

Evaluation and selection

’_@ I;% ,—%ﬁ ] [ % Generation n + 1
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FEATURE CONSTRUCTION

Different FC methods, main difference = how to evaluate the feature candidates
Filter, wrapper, or embedded methods

prior FC
(before learning the ML model)
o — pf+pp+py
rr] |pL

Filter Embedded
Information gain, Gini index, ... of the Build features during the induction process,
candidate feature usually with filter fithess functions

* Decision trees and ensemble methods

Wrapber  Generalized Additive Models

Inclusion into the initial list:
p%,0¢,¢° pk, 6P, P, etc., pé + ph + plt

and training of a ML algorithm
(the fitness of the candidate is the test score of
the ML algorithm)

list |/
DZZJtih '
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FEATURE CONSTRUCTION: PRACTICAL USE IN ML

ALGORITHMS
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PRIOR FEATURE CONSTRUCTION

Initial features Inclusion into the initial list
p%’ o, (PT, p;ep’ elep, (Plep, etc. p%, ot (PT, p';ep’ elep’ (plep’ etc., frew
A

A 4

Construction of one or several Training and evaluation
new features by a ML classifier

For the experiments:
C4.5 decision tree

E%)
ceatech [/
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PRIOR FEATURE CONSTRUCTION

0.74 1

0.72 1

Accuracy

0.68 1

0.66

T T T
1 2 3

T T
4 5

Mumber of added built features

ps +plt +pl

(cos (@™ — @) +9) cos (07 — 67?)

o — o
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EMBEDDED FEATURE CONSTRUCTION: IN TREES

Cherrier, N., Defurne, M., Poli, J. P., & Sabatié, F. (2019).
Embedded Constrained Feature Construction for High-
Energy Physics Data Classification. In Workshop on
Machine Learning for the Physical Sciences, NeurlPS
2019.

p Y
pe @ p; +p; +p;
Constrained Genetic COS(Glep _ GT)
oY v
Programming angle(p¥1,p’t + p??)
lep .
Pr cos(@'P — @) embedded into tree
Features Discriminative and node induction
in the intelligible features Fitness: tree splitting
dataset criterion (information

gain, Gini index, ...)

Faster construction

(“filter” methods are faster to evaluate
than training a whole ML model)
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EMBEDDED FEATURE CONSTRUCTION: IN TREES

“Weak” learner in ensemble methods: decision tree with embedded feature

construction
ex: AdaBoost, gradient boosting, XGBoost, etc.

DVCS

nb of features per tree
for ensemble methods

0 001 0.05 0.1 0.5 1 3 5 7
I I I I I I I I
— C4.5
0.74 4 ——- AdaBoost o e ._,__:I:.-—{E"]:
—-= GradientBoosting ]:..-—' _T
o~
AT .
T =] ’
> F— ]} e
E >0 —:I:# - 1L \
= L
[
ot _—
* 0.68 - \"_-—“"'—‘-'—‘-'—' o
/ -1
0.66 - ___,..-]E
0.647 | -
T T T T T T T
01 3 5 10 15 20 25

nb of features
for single C4.5 model
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GENERALIZED ADDITIVE MODELS (GAM) y predicted output

y true output

_ _ X1, ..., Xg INput variables
Generalized Linear Models (GLM) :

g(j}) - BO + lel + ...+ ded
g(¥) = y for regression, g(y) = ln(l%y) for classification
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GENERALIZED ADDITIVE MODELS (GAM) y predicted output

y true output

_ _ X1, ..., Xg INput variables
Generalized Linear Models (GLM) :

g@) = Bo+B1x1+ ..+ Baxqg
g(¥) = y for regression, g(y) = ln(l%y) for classification

Generalized Additive Models (GAM) :
9@ = Bo+ filx1) + .+ fa(xa)

12=0.6), pz_e GAM (lambda=0.5), pz_g1

f1(x1) fz(xz) f3(x3)

Hastie, T. J. (1986). Generalized additive models. In Statistical models in S (pp. 249-307). Routledge.
Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.
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EMBEDDED FEATURE CONSTRUCTION: IN GAM

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting
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EMBEDDED FEATURE CONSTRUCTION: IN GAM

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting

Objective function: minimize the cross entropy —yIn(y) — (1 — y) In(1 — 9)
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EMBEDDED FEATURE CONSTRUCTION: IN GAM

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting

Objective function: minimize the cross entropy —yIn(y) — (1 — y) In(1 — 9)

1) Compute By = In (1 -
0
Theresidualisr =y -9 =y —py (p, proportion of the majority class)

) to form the 1st model g(9) = B,.
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EMBEDDED FEATURE CONSTRUCTION: IN GAM

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting

Objective function: minimize the cross entropy —yIn(y) — (1 — y) In(1 — 9)

1) Compute B, = ln( Bo ) to form the 1st model g(9) = B,.

1-po
Theresidualisr =y -9 =y —py (po proportion of the majority class)

2) Build one feature x; discriminative wrt the residual

Fitness function for the Genetic Programming algorithm:

* Shallow tree (maximum 4 leaves)
* Feature fithess: RMS error of the inducted tree with the residual
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EMBEDDED FEATURE CONSTRUCTION: IN GAM

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting

Objective function: minimize the cross entropy —yIn(y) — (1 — y) In(1 — 9)

1) Compute B, = ln( Bo ) to form the 1st model g(9) = B,.

1-po
Theresidualisr =y -9 =y —py (po proportion of the majority class)

2) Build one feature x; discriminative wrt the residual

Fitness function for the Genetic Programming algorithm:

* Shallow tree (maximum 4 leaves)
* Feature fithess: RMS error of the inducted tree with the residual

3) Fit a shape function f; (x;) to the residual
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EMBEDDED FEATURE CONSTRUCTION: IN GAM

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting

Objective function: minimize the cross entropy —yIn(y) — (1 — y) In(1 — 9)

1) Compute B, = ln( Bo ) to form the 1st model g(9) = B,.

1-po
Theresidualisr =y -9 =y —py (po proportion of the majority class)

2) Build one feature x; discriminative wrt the residual

Fitness function for the Genetic Programming algorithm:

* Shallow tree (maximum 4 leaves)
* Feature fithess: RMS error of the inducted tree with the residual

3) Fit a shape function f; (x;) to the residual

4) Compute the new model: g(y) = g(») + f1(x;) and the new residual r =y — ¥,
and go back to step 2
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clasl2

RESULTS

0.74 1
0.72 1
0.70 A1

0.68 A

Accuracy

0.66

0.64 -

0.62 -

T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Neural network (2 hidden layers of size 100) 0.7012 + 0,0062
Linear SVM 0.6911
C4.5 with feature construction 0.718 = 0,020
(15 nodes using feature
Baselines: construction)
AdaBoost with feature construction 0.7280 + 0.0063

(50 trees of 1 node each with
feature construction)

Gradient Boosting with feature construction 0.7446 + 0.0071

(100 trees of 7 nodes each with
feature construction)

ﬁ
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RESULTS

Example of a model (the lower the y value, the higher the probability to have a
DVCS event):

p Y
p; +pz; +p;° angle(p¥2,p¥* + p¥?)
14 1.5 1
1.0
0_
0.5 1
: + +
. 0.0
-0.5 1
_3-.
-1.04 i , , , , , ,
6 7 8 9 10 11 12 13 00 25 50 7.5 100 125 150 175
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CLAS12 DATA ANALYSIS
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COMPARISON WITH OTHER ANALYSIS APPROACHES

Classical DVCS event selection Neural network approach

—0,05 GeV? < MM? v < 0,05 GeV*?

ep—epy
0,1 GeV < MMy ,eyx < 1,7 GeV

—1 GeV < missing energy < 2 GeV

missing pr (ep = epX) < 0,4 GeV

cone angle < 4°

2 hidden layers of size (20, 30)
11 high-level input features
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COMPARISON WITH OTHER ANALYSIS APPROACHES

Y axis: percentage of selected DVCS events among all existing DVCS in simulated data
X axis: percentage of PiO events still present in the selected subset

10 4

0.8 4
2
S 0.6
=
[E}
4
a
=
n
(W)
L 04 A
[¥]
1

0.2 4

= GAM with Guillaume variables
— HMeural network trained on cross sections
GAM with 7 built variables
L = @ Guillaume
0.0 4 ® FX

T T T T T
0o 0.2 04 06 0.8
Pil} contamination
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COMPARISON WITH OTHER ANALYSIS APPROACHES

Y axis: percentage of selected DVCS events among all existing DVCS in simulated data
X axis: percentage of PiO events still present in the selected subset

A PiO subtraction method

10 4
/
0.8 4 <
L ]

2
S 0.6 ]
=
[E}
4
a
=
H
(W)
L 04 A
3 —

0.2 4

= GAM with Guillaume variables
— HMeural network trained on cross sections
GAM with 7 built variables
L = @ Guillaume
0.0 4 ® FX
T T T T T
0 0.2 0.4 06 0.8

Pil} contamination
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COMPARISON WITH OTHER ANALYSIS APPROACHES

10 = - 101 Bin Ba i
—— GAM G variables |I
08 0.8 4 NN
n o no GAM T variables
§ Bin 7a E @ G:34.0% DVCS, 91.8% PiD
U e = GAM G variables U ng- @ FX 27.7%DVCS, 87 1% Pi0
wy w B
g — g
o GAM T variables =]
E 0.4 ® G:22.0% DVCS, 27.6% Pi0 E 044
i ® FX:206% DVCS, 20.0%Fi0 | &
[ [T
02 i - v 024
L 4
t 00 oo
T T T T T T T T
0.0 0z o4 06 08 10 L] 02 04 0.6 08 10
— — > O 2 5 Pi0 contamination Pil contamination
2 — )
Q 10 — Bin 5a 101 -
r —— GAM G variables
— NN
08 0.8 4
Ju] GAM 7 variables ]
§ @ G:22.0% DVCS, 16.7% Pi0 E Bin 6a
Yoo ® FX- 20 2% DVCS, 13 5% R0 T 46 { = GAM G variables
w Y w
g I
g g GAM T variables
o 04 @ 049 @ G:344%DVCS, 83.7%Pi0
o o @ X 26.9% DVCS, B0.0% Pi0 / .
& . 3 .
oo -
T T T T T T T T
0.0 0z o4 06 08 10 0.0 0z 04 0.6 08 10
Pil contamination Pil contamination
10 Bin 3a 10
—— GAM G variables
08 e LR

GAM 7 variables

8 a
5 ® G:19.2% DVCS, 11.4% Pi0 5

o ne ® P 178%DVCS, B9%PO | T gg

g o

5 3

T o4 Toos Bin 4a

2 b —— GAM G variablzs
v A — NN

GAM 7 variables
@ G:38.4% DVCS, 56.2% Pi0

02 ,\ 02
| 0.0

n
00 - g FX:27.0% DVCS, 52.5% Pi0 |
00 02 04 06 o8 10 00 02 04 06 08 10
Pill contamination Pil contamination
10 Bin la 10
— GAM G variables
— NN
08 08
Y] GAM 7 variables ]
5 ® G:22.3% DVCS, 4.9% Pi0 g Bin 2a
> oos ® FX:21.0%DVCS 35%Pi0 | T gg —— GAM G variables
g § —m
o o GAM T variables
T 04 T o4 . ® G:37.9% DVCS, 26.0% Pi0
o o ®  FX:27.2% DVCS, 22 4% Fi0
Vi o= A °
0z % 02
ok 9 ¥ S
T T
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COMPARISON WITH OTHER ANALYSIS APPROACHES

10 104
08 038
4 a
g Bin 7a g
3 o6 —— GAM G variables B 06
g — g
=] . GAM T variables [=]
T 04 ® G 4B 5% DVCS, 18.7% Pi0 T 044 Bin Ba
k] @ FX:43.0% DVCS, 14.0% PiD b = GAM G variables
o o
W ) 4= NN
02 02 | GAM 7 variables
. ® G:69.0% DVCS, 76.7% Pi0
00 é_"““--k 004 ® FX:53.4% DVCS, 66.3% Pi0
T

T T T T T T
02 04 06 08 10 00 0z 04 06 08 10

t 0.0
— — < O 2 5 PFi0 contamination Fi0 contamination
)

Q 101 —— Bin 5a 10 g
—— GAM G variables
— NN
08 08
] GAM 7 variables ]
§ ® G:40.3% DVCS, 6.0% PiD §
oos ® PL3TE%DVES 45%Pi0 | 2 gg
1 15
& g
T osq|@ T 04 Bin 6a
] b —— GAM G variables
h & — NN
021 02 GAM T variables
® G:69.2% DVCS, 67.3% Pi0
00 - 00 SRS ® FX: 62.8% DVCS, 57.4% Pi0 |
T T T T T T T T
0.0 02 04 06 0.8 10 0.0 0.2 0.4 06 0.8 10
Pi0 contamination Pil contamination
10 4 Bin 3a 10 4 -
—— GAM G variables off
— NN
“ 08 GAM T variables " 08
§ ® G- 30 6% DVCS, 3.0% Pi0 §
206+ ® FX289%DVCS, 21%PD | T g
o o
g 8
b1 4 = 4
% 04 % 04 Bin 4a
kil 3 o —— GAM G variables
& I — NN
02 1 024 GAM 7 variables
J ® G:65.7% DVCS, 58.1% Pi0
004 00 4 @ FX:59.6% DVCS, 50.6% Pi0
00 0z 04 06 08 10 00 02 04 06 08 10
PFill contamination Fil contamination
10 Bin la 104
= GAM G variables
— NN
o8 0.8
] GAM 7 variables ]
g ® G 28.1% DVCS, 1.4% Pi0 g
Zos ® FX.26.9%DVCS, LO%PID | % gg |
15 15
g g
T o4 T 04 Bin 2a
b b —— GAM G variables
o ﬁ‘ [T}
n i 1 — NN
02 02 GAM 7 variables
® G:57.3% DVCS, 27.1% Pi0
00— 004 ®  FX:52.4% DVCS, 21.3% Pi0
T
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TRANSFER LEARNING

Issues:
* Shifts due to detector resolutions and calibrations
* Different data distributions (due to cross sections)

°* New classes present in real data but not in simulations (other physics
processes, accidental background, ...)

First approach from the neural network track:
S~
she hoRo [ | | 2

1 class label y

J soanjyeaj

label pl(dl(‘t()r Gy(+ 0, ) —_—
)\ 2La v L=L,—AL
N —A 90 ¢ ” g domain classifier Gy(-;04) Yy d
%\ Ja, "QQ;. r - \
2,
feature extractor G¢(-;0y) '/?})e)'(s:? “
%4 ® E> B domain label d

oL |
—_—
E> 50, oLy loss Ly
. forwardprop  backprop (and produced derivatives) 00 d

Ganin, Y., & Lempitsky, V. (2014). Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495

Baalouch, M., Defurne, M., Poli, J. P., & Cherrier, N. (2019). Sim-to-Real Domain Adaptation For High Energy Physics. In Workshop on Machine
Learning for the Physical Sciences, NeurlPS 2019.
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TRANSFER LEARNING

Two approaches to transfer learning or domain adaptation for interpretable ML
models:

* Modify thresholds and leaf weights by learning a transformation from source to
target data

° Find a domain-invariant feature representation

ldeas:

* Select a subset of data containing only m,-production events and learn the
transformation on this subset

* Weight real events to “remove” the influence of cross-sections and get
distributions comparable to those of simulated data

Still work in progress!
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CONCLUSION

Analysis of CLAS12 data to select DVCS events

* Feature construction principle: get new discriminative high-level variables
° Implementation in several “interpretable” algorithms

* Comparison with other analysis methods

* Still work to do with transfer learning to be able to apply all of this on real data

Thank you!
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