

Locality-sensitive hashing indexing schemes for compositional assembly-free metagenomics data

2018-11-28 | InTheArt@CEA | Jacques-Henri Sublemontier

OUTLINE

Metagenomics

1. Context 2. Clustering metagenomic reads 3. Assessing inter-reads connectivity

Locality Sensitive Hashing

SimHash - LSH *via* random projections
 Orthonormality and LSH
 Structured binary embeddings
 Fast Johnson-Lindenstrauss transform
 Preconditioned binary embeddings
 Discussion

LSH for metagenomics

1. Indexing compositional profiles 2. Datasets 3. Implementation 4. Evaluations

5. k-NN retrieval performance 6. Bin sizes balance 7. Binning performance 8. Time performance

Conclusion and future work

We consider de novo assembly-free binning

CLUSTERING METAGENOMIC READS -PROPOSED APPROACH

Clatech

Given a sparse structure (*e.g.* proximity graph) between reads, one can design specific and efficient clustering algorithm to partition the graph.

CLUSTERING METAGENOMIC READS -PROPOSED APPROACH

- Given a sparse structure (*e.g.* proximity graph) between reads, one can design specific and efficient clustering algorithm to partition the graph.
- Can we compute proximity graphs efficiently ?

Clatech

ASSESSING INTER-READS CONNECTIVITY -PROXIMITY GRAPHS

2018-11-28 | InTheArt@CEA | Jacques-Henri Sublemontier | 3

The Nearest Neighbor Search (NNS)

Given a dataset $\mathcal{X} \in \mathbb{R}^{p}$ with $|\mathcal{X}| = n$ and $x_i \in \mathcal{X}$, find x_j that is closer to x_i *i.e.*

 $x_j = \operatorname*{argmin}_{x \in \mathcal{X}} d(x, x_i)$

- can be extended to k-Nearest Neighbor Search
- can be done with tree-based algorithm : k-d trees, R-trees, etc.
- but this is not suitable with high-dimensional datasets ($e.g. \ge 20$)

We are further interested in Approximate Nearest Neighbor problem

LSH - GENERALITIES

Idea

Let $h(x_i)$ be a **binary word** (hashcode) of length *b*.

- 1. Devise a data structure \mathcal{H} : hashcode \rightarrow list(objects) (hash table) *s.t.* :
 - two close objects (*e.g.* reads) x_1 and x_2 have the same hashcode $(h(x_1) = h(x_2))$,
 - two distant objects have different hashcodes $(h(x_1) \neq h(x_2))$;
 - \rightarrow with high probability
- 2. Then, $\forall x_i$:
 - searching nearest neighbours of any x_i in input space leads to searching closests x_j in hashcodes space associated with the hamming distance d_H

SIMHASH - LSH VIA RANDOM PROJECTIONS¹

$$Y = GX; \quad \overbrace{X \in \mathbb{R}^{p \times n}}^{\text{Data matrix}}; \quad \overbrace{G \in \mathbb{R}^{b \times p}}^{\text{Projector}}$$
$$G = [\mathbf{g}_1, \dots, \mathbf{g}_b]^\top; \quad \forall j \ \mathbf{g}_j \in \mathbb{R}^p, \ \mathbf{g}_j \sim \mathcal{N}_p(\mathbf{0}, \mathbf{I})$$
$$\forall \mathbf{x}_i, \ h(\mathbf{x}_i) = \text{enc}(G\mathbf{x}_i); \quad h(\mathbf{x}_i) = \overbrace{h_1(\mathbf{x}_i), \cdots, h_b(\mathbf{x}_i)}^{\text{Concat. of } h_j(.)}$$
$$h_j(\mathbf{x}) = \text{enc}(\mathbf{g}_j^\top \mathbf{x}) = \begin{cases} 1_2 & \text{if } \langle \mathbf{g}_j, \mathbf{x} \rangle \ge 0\\ 0_2 & \text{otherwise} \end{cases}$$

Clatech

¹Moses S. Charikar. "Similarity Estimation Techniques from Rounding Algorithms". In: *Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing*. STOC '02. Montreal, Quebec, Canada: ACM, 2002, pp. 380–388. ISBN: 1-58113-495-9. DOI: 10.1145/509907.509965. URL: http://doi.acm.org/10.1145/509907.509965.

2018-11-28 | InTheArt@CEA | Jacques-Henri Sublemontier | 7

Operations

- 1. **Indexing**: store all \mathbf{x}_i in \mathcal{H} at key $h(\mathbf{x}_i)$ (with chaining)
 - 1.1 Projector sampling: build G
 - 1.2 **Projecting**: compute $y_i = Gx_i, \forall x_i$
 - 1.3 **Rounding**: compute $h(\mathbf{x}_i) = enc(\mathbf{y}_i), \forall \mathbf{x}_i$ (binarization)
- 2. Querying: retrieve k closest x from $x_{i'}$: arg min_k $d(x, x_{i'})$
 - 2.1 In bin: $\arg \min_k d(\mathbf{x}, \mathbf{x}_{i'})$ *s.t.* $d_H(h(\mathbf{x}), h(\mathbf{x}_{i'})) = 0$ (if $|h(\mathbf{x}_{i'})| \ge k$)
 - 2.2 *L*-radius bins: arg min_k $d(\mathbf{x}, \mathbf{x}_{i'})$ s.t. $d_H(h(\mathbf{x}), h(\mathbf{x}_{i'})) \leq L$ (else)
 - 2.3 Search-based in bins (hamming) space considering an appropriate order relation ≺ (heuristic)

Discussion

- G involved in indexing and querying
 - ightarrow *G* should be fast sampled, with lowest storage cost
 - ightarrow Gx should be computed efficiently

$$\blacksquare \mathbb{P}[h_i(\mathbf{x_1}) = h_i(\mathbf{x_2})] = sim(\mathbf{x_1}, \mathbf{x_2}) = 1 - \frac{\theta(\mathbf{x_1}, \mathbf{x_2})}{\pi}$$

$$\mathbb{E}[d_{H}(h(\mathbf{x}_{1}), h(\mathbf{x}_{2}))] = \frac{b}{\pi}\theta(\mathbf{x}_{1}, \mathbf{x}_{2}) = C\theta(\mathbf{x}_{1}, \mathbf{x}_{2})$$

For any x_1, x_2 , the hamming distance between their hashcodes is an estimate of their angle $\theta(x_1, x_2)$

 \rightarrow For cosine or angular distances approximation.

ORTHOGONALITY AND LSH

$$Y = GX$$
; $G \in \mathbb{R}^{b imes p}$

G can be fully orthogonal

$$egin{aligned} G = \left[\mathbf{g_1}, \ldots, \mathbf{g_b}
ight]^ op \; ; \; orall j \; \mathbf{g_j} \in \mathbb{R}^{
ho}, \; \mathbf{g_j} \sim \mathcal{N}_{
ho}(\mathbf{0}, \mathbf{I}) \ & \ GG^ op = \mathbf{I}, ext{ with any process} \end{aligned}$$

ORTHOGONALITY AND LSH

$$Y = GX$$
; $G \in \mathbb{R}^{b imes p}$

G can be fully orthogonal

$$G = [\mathbf{g}_1, \dots, \mathbf{g}_b]^\top$$
; $\forall j \ \mathbf{g}_j \in \mathbb{R}^p$, $\mathbf{g}_j \sim \mathcal{N}_p(\mathbf{0}, \mathbf{I})$
 $GG^\top = \mathbf{I}$, with any process

 $\land b \leq p$

ORTHOGONALITY AND LSH²

$$Y = GX$$
; $G \in \mathbb{R}^{b \times p}$, $(GG^{\top} = I)$

G can be batch-orthogonal, given *L* batches of size $\frac{b}{L} \leq p$

$$\begin{aligned} G' &= [\mathbf{g}_1, \dots, \mathbf{g}_b] \ ; \ \forall j \ \mathbf{g}_j \in \mathbb{R}^p, \ \mathbf{g}_j \sim \mathcal{N}_p(\mathbf{0}, \mathbf{I}) \ ; \ G' \in \mathbb{R}^{p \times b} \\ G &= [Q_1, \dots, Q_L]^\top \ ; \ \forall I \ Q_l \in \mathbb{R}^{p \times (\frac{b}{L})} \\ \forall I, \ G'_{\left[1:p, \ l \times \frac{b}{L} + 1: (l+1)\frac{b}{L}\right]} = Q_l R_l \ ; \ Q_l Q_l^\top = \mathbf{I} \\ G G^\top \neq \mathbf{I} \end{aligned}$$

² Jianqiu Ji et al. "Batch-orthogonal locality-sensitive hashing for angular similarity". In: *IEEE transactions on pattern analysis and machine intelligence* 36.10 (2014), pp. 1963–1974.

ORTHOGONALITY AND LSH³

$$Y = GX$$
; $G \in \mathbb{R}^{b imes p}$, $GG^{ op} = \mathbf{I}$

G can be orthogonal by kronecker product

 $G = G_1 \otimes \cdots \otimes G_L$; $\forall I \ G_l \in \mathbb{R}^{2 \times 2}$

 $\begin{aligned} \forall l, \ G_l = Q_l; \ G'_l = Q_l R_l; \ G'_l = [\mathbf{g_1}, \mathbf{g_2}], \ \mathbf{g_j} \sim \mathcal{N}_2(\mathbf{0}, \mathbf{I}), \ G'_l \in \mathbb{R}^{2 \times 2} \\ \forall l, \ G_l G_l^\top = \mathbf{I} \end{aligned}$

³X. Zhang et al. "Fast Orthogonal Projection Based on Kronecker Product". In: 2015 IEEE International Conference on Computer Vision (ICCV). 2015, pp. 2929–2937. DOI: 10.1109/ICCV.2015.335.

ORTHOGONALITY AND LSH³

Y = GX; $G \in \mathbb{R}^{b imes p}$, $GG^{ op} = I$

G can be orthonormal by kronecker product

 $G = G_1 \otimes \cdots \otimes G_L$; $\forall I \ G_l \in \mathbb{R}^{2 \times 2}$

 $\forall l, \ G_l = Q_l; \ G'_l = Q_l R_l; \ G'_l = [\mathbf{g_1}, \mathbf{g_2}], \ \mathbf{g_j} \sim \mathcal{N}_2(\mathbf{0}, \mathbf{l}), \ G'_l \in \mathbb{R}^{2 \times 2}$ $\forall l, \ G_l G_l^\top = \mathbf{l}$

 \bigwedge Target *G* dimensions must be factorizable with a same number of factors *L*

³X. Zhang et al. "Fast Orthogonal Projection Based on Kronecker Product". In: 2015 IEEE International Conference on Computer Vision (ICCV). 2015, pp. 2929–2937. DOI: 10.1109/ICCV.2015.335.

ORTHOGONALITY AND LSH

Discussion

- Reduction of Var[d_H(h(x₁), h(x₂))] (Batch-orthonormal LSH) → Leads to better accuracy in angle estimation, thus in approximate nearest neighbor query → The resulting binary codes are considered more informative
- Orthonormal matrix sampling from O(p³) to O(log(p)) (Kronecker-based approach, for very small element matrices (2 × 2)). Also space complexity is O(log p)
 → Projection Gx_i can be done in O(plog p)
 → Care for existence of G built from kronecker product for specific target dimensions b and p

STRUCTURED BINARY EMBEDDINGS⁴

Y = GX; $G \in \mathbb{R}^{b imes p}, G = G'D$

G' can be circulant (or Tœplitz or Hankel)

 $D = \text{diag}(d_1, \dots, d_p) \; ; \; d_j \sim Rademacher$ $\mathbf{g} \sim \mathcal{N}_p(\mathbf{0}, \mathbf{l}) \; ; \; \mathbf{g} = (g_1, \dots, g_p)$ $G' = \begin{bmatrix} g_1 & g_2 & \dots & g_{p-1} & g_p \\ g_p & g_1 & g_2 & g_{p-1} \\ \vdots & g_p & g_1 & \ddots & \vdots \\ g_{p-b+3} & \ddots & \ddots & g_2 \\ g_{p-b+2} & g_{p-b+3} & \dots & g_{p-b} & g_{p-b+1} \end{bmatrix} ;$

⁴ Felix Yu et al. "Circulant Binary Embedding". In: *Proceedings of the 31st International Conference on Machine Learning*. Ed. by Eric P Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China: PMLR, 2014, pp. 946–954. URL: http://proceedings.mlr.press/v32/yub14.html.

Ceatech

STRUCTURED BINARY EMBEDDINGS

Discussion

- $O(p \log p)$ time complexity of the projection Gx_i (*via* FFT)
- O(p) space complexity
- **g**₁,..., **g**_b (rows of *G*) are not independent. Realizations are not orthogonal but unlikely correlated.

Expand G' in $C_p \in \mathbb{R}^{p \times p}$. We have $C_p = F_p^*$. $diag(F_p \mathbf{g})F_p$, then compute $\mathbf{y} = C_p \mathbf{x}_{\mathbf{i}} = F_p^*$. $diag(F_p \mathbf{g})F_p \mathbf{x}_{\mathbf{i}}$: 1. $\mathbf{a} = F_p \mathbf{x}_{\mathbf{i}}$ (*fft*($\mathbf{x}_{\mathbf{i}}$) in $\mathcal{O}(p \log p)$) 2. $\mathbf{b} = F_p \mathbf{g}$ (*fft*(\mathbf{g}) in $\mathcal{O}(p \log p)$) 3. $\mathbf{z}^{\top} = [a_1b_1, \cdots, a_pb_p]$ in $\mathcal{O}(p)$ 4. $\mathbf{y} = \frac{1}{p}F_p^* \mathbf{z}$ (*ifft*(\mathbf{z}) in $\mathcal{O}(p \log p)$)

Lemma (Johnson-Lindenstauss^{5,6})

Given $\epsilon > 0$ and a positive integer $b \ge \epsilon^{-2} \log n$. For any set \mathcal{X} of points in p dimensions, $\exists \mathcal{G} : \mathbb{R}^p \mapsto \mathbb{R}^b$ projection from p dimensions to b dimensions s.t. $\forall x_1, x_2 \in \mathcal{X}$,

 $(1-\epsilon)||x_1-x_2||_2^2 \le ||\mathcal{G}(x_1)-\mathcal{G}(x_2)||_2^2 \le (1+\epsilon)||x_1-x_2||_2^2$

⁵Dimitris Achlioptas. "Database-friendly random projections: Johnson-Lindenstrauss with binary coins". In: Journal of Computer and System Sciences 66.4 (2003). Special Issue on PODS 2001, pp. 671–687. ISSN: 0022-0000. DOI: https://doi.org/10.1016/S0022-0000(03)00025-4. URL: http://www.sciencedirect.com/science/article/pii/S002200003000254.

⁶William Johnson and Joram Lindenstrauss. "Extensions of Lipschitz mappings into a Hilbert space". In: Conference in modern analysis and probability (New Haven, Conn., 1982). Vol. 26. Contemporary Mathematics. American Mathematical Society, 1984, pp. 189–206.

FJLT-BASED LSH⁷

$$Y = GX$$
; $G \in \mathbb{R}^{b imes p}$; $G = PHD$

 $D = \text{diag}(d_1, \dots, d_p)$; $d_j \sim Rademacher$

$$\begin{aligned} H_p &= H_2 \otimes H_{2^{m-1}} ; \ H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} ; \ H_1 = \begin{bmatrix} 1 \end{bmatrix} ; \ H = \frac{1}{\sqrt{p}} H_p \\ P &\in \mathbb{R}^{b \times p} ; \ P_{ij} \sim \textit{Bernoulli}(q) \times \mathcal{N}(0, q^{-1}) \\ q &= \min\left\{\Theta\left(\frac{\epsilon^{z-2}\log^z n}{p}\right), 1\right\} ; \ z \in \{1, 2\} \ (||.||_z) \end{aligned}$$

⁷Nir Ailon and Bernard Chazelle. "The Fast Johnson-Lindenstrauss Transform and Approximate Nearest Neighbors". In: *SIAM J. Comput.* 39.1 (May 2009), pp. 302–322. ISSN: 0097-5397. DOI: 10.1137/060673096. URL: http://dx.doi.org/10.1137/060673096.

$$Y = GX$$
; $G \in \mathbb{R}^{b \times p}$; $G = PHD$

$$D = \text{diag}(d_1, \dots, d_p)$$
; $d_j \sim Rademacher$

$$\begin{aligned} H_{p} &= H_{2} \otimes H_{2^{m-1}} ; \ H_{2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} ; \ H_{1} = \begin{bmatrix} 1 \end{bmatrix} ; \ H = \frac{1}{\sqrt{p}} H_{p} \\ P &\in \mathbb{R}^{b \times p} ; \ P_{ij} \sim Bernoulli(q) \times \mathcal{N}(0, q^{-1}) \\ q &= \min \left\{ \Theta \left(\frac{\epsilon^{z-2} \log^{z} n}{p} \right), 1 \right\} ; \ z \in \{1, 2\} \ (||.||_{z}) \end{aligned}$$

▲ Target G dimension p must be a power of 2

⁷Nir Ailon and Bernard Chazelle. "The Fast Johnson-Lindenstrauss Transform and Approximate Nearest Neighbors". In: *SIAM J. Comput.* 39.1 (May 2009), pp. 302–322. ISSN: 0097-5397. DOI: 10.1137/060673096. URL: http://dx.doi.org/10.1137/060673096.

The role of HD

$$\max_{x \in \mathcal{X} \subset \mathbb{R}^p} ||HDx||_{\infty} = \mathcal{O}(p^{-1/2}\sqrt{\log n}) \text{ with high probability.}$$

- + $\forall x \in \mathcal{X}, \ HDx$ become smooth
- + HDx can be computed in $\mathcal{O}(p \log p)$
- $+ HD(HD)^{\top} = \mathbf{I}$

The role of HD

$$\max_{x \in \mathcal{X} \subset \mathbb{R}^p} ||HDx||_{\infty} = \mathcal{O}(p^{-1/2}\sqrt{\log n}) \text{ with high probability.}$$

 $- p = 2^m$ by definition of H_p

$$H_1 = \begin{bmatrix} 1 \end{bmatrix}$$
; $H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$; $H_p = H_2 \otimes H_{2^{m-1}}$

Discussion

- Originally developped to find l_2 and $l_1(l_z)$ embeddings, without rounding (binarization *via* sign operator)
- One can binarize the output
- HD as a preconditioner (smoother) → also called ROS⁸
- H represents Walsh-Hadamard matrix

⁸F. Pourkamali-Anaraki and S. Becker. "Preconditioned Data Sparsification for Big Data With Applications to PCA and K-Means". In: *IEEE Transactions on Information Theory* 63.5 (2017), pp. 2954–2974. ISSN: 0018-9448. DOI: 10.1109/TIT.2017.2672725.

PRECONDITIONED BINARY EMBEDDINGS^{9,10,11}

$$Y = GX$$
; $G \in \mathbb{R}^{b imes p}$; $G = G_{struct}HD$

G_{struct} may be any structured or unstructured gaussian
 HD is the preconditioner

 $G_{struct} = HGP_1^{9}$; $G_{struct} = HD_3HD_2^{10}$; $G_{struct} = P_2TD_2P_1^{11}$

P_i ∈ ℝ^{b'×p} (b ≤ b' ≤ p) is a permutation matrix with rows selection (b' = b when needed)

¹⁰Alexandr Andoni et al. "Practical and Optimal LSH for Angular Distance". In: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. NIPS'15. Montreal, Canada: MIT Press, 2015, pp. 1225–1233. URL: http://dl.acm.org/citation.cfm?id=2969239.2969376.

¹¹Xinyang Yi, Constantine Caramanis, and Eric Price. "Binary Embedding: Fundamental Limits and Fast Algorithm". In: *Proceedings of the 32nd International Conference on Machine Learning*. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR, 2015, pp. 2162–2170. URL: http://proceedings.mlr.press/v37/yi15.html.

⁹Anirban Dasgupta, Ravi Kumar, and Tamas Sarlos. "Fast Locality-sensitive Hashing". In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '11. San Diego, California, USA: ACM, 2011, pp. 1073–1081. ISBN: 978-1-4503-0813-7. DOI: 10.1145/2020408.2020578. URL: http://doi.acm.org/10.1145/2020408.2020578.

PRECONDITIONED BINARY EMBEDDINGS

Discussion

Lower bound on *b* length of binary word when using unstructured *G* to achieve a specific distortion δ for a given probability.

Given any
$$f : \mathbb{S}^{p-1} \to \{0,1\}^b$$
 and $g : \{0,1\}^b \times \{0,1\}^b \to \mathbb{R}$, *s.t.*

$$\forall x_i, x_j \in \mathbb{S}^{p-1}, |g(f(x_i), f(x_j)) - d(x_i, x_j)| \le \delta \text{ with probability } (1 - \varepsilon)$$

Then

$$b = \Omega(\delta^{-2}\log(n/\varepsilon))$$

DISCUSSION

- Focus on high dimensional data
- Multiple hash tables¹² vs. multi-probing
- Data-independent LSH vs. Data-dependent LSH^{13, 14}
- Fully randomized vs. learned hash functions
- Short vs. long codes
- Preconditionner (HD) + Structured (fast) subspace projection is a regular scheme

¹³J. Wang et al. "Learning to Hash for Indexing Big Data – A Survey". In: *Proceedings of the IEEE* 104.1 (2016), pp. 34–57. ISSN: 0018-9219. DOI: 10.1109/JPROC.2015.2487976.

¹⁴J. Wang et al. "A Survey on Learning to Hash". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* PP.99 (2018), pp. 1–1. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2017.2699960.

¹²M. Norouzi, A. Punjani, and D. J. Fleet. "Fast Exact Search in Hamming Space With Multi-Index Hashing". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 36.6 (2014), pp. 1107–1119. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2013.231.

4-mer	frequency
ATTG/CAAT	0
TTGA/TCAA	0
TGAC/GTCA	0

ATTGAC...

4-mer	frequency
ATTG/CAAT	+1
TTGA/TCAA	0
TGAC/GTCA	0

4-mer	frequency
ATTG/CAAT	1
TTGA/TCAA	+1
TGAC/GTCA	0

ATTGAC...

4-mer	frequency
ATTG/CAAT	1
TTGA/TCAA	1
TGAC/GTCA	+1

4-mer	frequency
ATTG/CAAT	1
 TTGA/TCAA	1
TGAC/GTCA	1

ATTGAC...

	4-mer	frequency
ATTGAC	ATTG/CAAT TTGA/TCAA TGAC/GTCA	 1 1 1

For each read compositional profile x_i:

1. $x_i \leftarrow x_i + \mathbf{1}$ (add-one smoothing)

2. $x_i \leftarrow x_i / \mathbf{gm}(x_i)$ (centered log-ratio¹⁵)

 $gm(x_i)$ refers to the geometric mean of x_i

¹⁵J Aitchison. The Statistical Analysis of Compositional Data. London, UK, UK: Chapman & Hall, Ltd., 1986. ISBN: 0-412-28060-4.

LSH & Metagenomics: Practical considerations

• Leverage *HD* preconditioner for $p \neq 2^m$

$$H_{p_{blk}} = \begin{bmatrix} \frac{1}{\sqrt{2^{t_1}}} H_{2^{t_1}} & 0 \\ & \ddots & \\ 0 & & \frac{1}{\sqrt{2^{t_\tau}}} H_{2^{t_\tau}} \end{bmatrix} ; \ p = \sum_{i=t_1}^{t_\tau} 2^i$$

LSH & Metagenomics: Practical considerations

Leverage *HD* preconditioner for $p \neq 2^m$

example: p = 136 (4-mers compositionnal vector dimension)

$$H_{136_{blk}} = \begin{bmatrix} \frac{1}{\sqrt{128}} H_{128} & 0\\ 0 & \frac{1}{\sqrt{8}} H_8 \end{bmatrix}; \ p = 128 + 8 = 2^7 + 2^3$$

Then select a random permutation of *b* rows (out of *p*) of (randomly column permuted) $H_{p_{blk}}$ to get $H_{p_{blk}} \in \mathbb{R}^{b \times p}$

LSH & Metagenomics: Practical considerations

- Leverage *HD* preconditioner for $p \neq 2^m$
- Build a valid kronecker-product based $G \in \mathbb{R}^{b \times p}$ for any *b* and *p*

$$G_{(b \times p)_{blk}} = \begin{bmatrix} G_{(b_1 \times p_1(b_1))} & \cdots & G_{(b_1 \times p_{\tau_2}(b_1))} \\ \vdots & \vdots & \vdots \\ G_{(b_{\tau_1} \times p_1(b_{\tau_1}))} & \cdots & G_{(b_{\tau_1} \times p_{\tau_2}(b_{\tau_1}))} \end{bmatrix}$$
$$b = \sum_{r=1}^{\tau_1} b_r, \ \forall r \ b_r = 2^{m_r}, \ p = \sum_{c=1}^{\tau_2} p_c(b_r), \ p_c(b_r) = 2^{m_c}$$

LSH & Metagenomics: Practical considerations

- Leverage *HD* preconditioner for $p \neq 2^m$
- Build a valid kronecker-product based $G \in \mathbb{R}^{b \times p}$ for any b and p

$$G_{(b \times p)_{blk}} = \begin{bmatrix} G_{(b_1 \times p_1(b_1))} & \cdots & G_{(b_1 \times p_{\tau_2}(b_1))} \\ \vdots & \vdots & \vdots \\ G_{(b_{\tau_1} \times p_1(b_{\tau_1}))} & \cdots & G_{(b_{\tau_1} \times p_{\tau_2}(b_{\tau_1}))} \end{bmatrix}$$
$$G_{(b_r \times p_c(b_r))} = G_{(b_r \times p_c(b_r))_1} \otimes \cdots \otimes G_{(b_r \times p_c(b_r))_L}$$

LSH & Metagenomics: Practical considerations

- Leverage *HD* preconditioner for $p \neq 2^m$
- Build a valid kronecker-product based $G \in \mathbb{R}^{b \times p}$ for any *b* and *p*

example: p = 136 (4-mers compositionnal vector dimension), b = 12

$$G_{(12 imes 136)_{blk}} = \left[egin{array}{cc} G_{(8 imes 128)} & G_{(8 imes 8)} \ G_{(4 imes 128)} & G_{(4 imes 8)} \end{array}
ight]$$

 $G_{(8\times 8)} = G_{(2\times 2)} \otimes G_{(2\times 2)} \otimes G_{(2\times 2)} \; ; \; G_{(4\times 128)} = G_{(2\times 16)} \otimes G_{(2\times 8)}$

LSH & Metagenomics: Practical considerations

- Leverage *HD* preconditioner for $p \neq 2^m$
- Build a valid kronecker-product based $G \in \mathbb{R}^{b \times p}$ for any *b* and *p*

example: p = 136 (4-mers compositionnal vector dimension), b = 12

$$G_{(12 \times 136)_{blk}} = \begin{bmatrix} G_{(8 \times 128)} & G_{(8 \times 8)} \\ G_{(4 \times 128)} & G_{(4 \times 8)} \end{bmatrix}$$

 $G_{(8\times 8)} = G_{(2\times 2)} \otimes G_{(2\times 2)} \otimes G_{(2\times 2)} \; ; \; G_{(4\times 128)} = G_{(2\times 16)} \otimes G_{(2\times 8)}$

$$G_{(b' \times p')}^{\top}G_{(b' \times p')} = I\left(G_{(b' \times p')} \text{ QR dec.}\right); \ G_{(b \times p)}^{\top}G_{(b \times p)} \approx I$$

n: number of reads. Reads are \sim 600 b.p. length

Name	n	n.species	n.genus	coverage
MC5	25K	5	3	1X
MC10	50K	10	10	1X
:	:	:	÷	:
MC100	500K	100	≤ 67	1X
:	:	:	÷	
MC700	35M	700	\leq 321	10X

- *n.species*: number of classes at species level
- *n.genus*: number of classes at genus level

CI	Cluster Node N0			
Socket 0 Socket 1			ket 1	
T ₀	<i>T</i> ₁	T ₀	T_1	
<i>p</i> 0	P16	<i>p</i> 1	<i>p</i> ₁₇	
p2	<i>p</i> ₁₈	<i>p</i> ₃	<i>p</i> ₁₉	
<i>p</i> ₄	1 p ₂₀	<i>p</i> ₅	P ₂₁	
<i>p</i> ₆	P22	p7	p ₂₃	
<i>p</i> ₈	1 p ₂₄	<i>p</i> ₉	P25	
P10	P26	<i>p</i> ₁₁	P27	
P12	P ₂₈	P ₁₃	p ₂₉	
p ₁₄	P ₃₀	P ₁₅	p_{31}	

Cluster Node N0			
Socket 0	Socket 1		
T ₀ ; T ₁	T ₀	T ₁	
p0 p16	<i>p</i> 1	<i>p</i> ₁₇	
p2 p18	<i>p</i> ₃	<i>p</i> ₁₉	
$p_4 + p_{20}$	<i>p</i> ₅	p ₂₁	
p ₆ p ₂₂	p7	p ₂₃	
p8 1 p24	<i>p</i> ₉	p ₂₅	
p10 p26	<i>p</i> ₁₁	p 27	
P12 P28	p ₁₃	p ₂₉	
P14 P30	P ₁₅	P ₃₁	

CI	Cluster Node N1			
Soc	Socket 0		ket 1	
T ₀	<i>T</i> ₁	To	T ₁	
p_0	p 16	<i>p</i> 1	1 p17	
p2	<i>p</i> ₁₈	<i>p</i> ₃	p 19	
p_4	1 p ₂₀	<i>p</i> ₅	1 <i>p</i> ₂₁	
p_6	p ₂₂	p7	p ₂₃	
p_8	1 p ₂₄	p_9	1 p ₂₅	
<i>p</i> ₁₀	P 26	<i>p</i> ₁₁	P27	
p ₁₂	P ₂₈	p ₁₃	p ₂₉	
p_{14}	p_{30}	P ₁₅	P ₃₁	

Cluster Node N2			
Soci	Socket 0		ket 1
T ₀	T ₁	T ₀	T ₁
p_0	1 p 16	<i>p</i> 1	p17
p2	<i>p</i> ₁₈	<i>p</i> ₃	P19
p_4	1 p ₂₀	<i>p</i> ₅	1 <i>p</i> ₂₁
p_6	P22	p7	P23
p_8	1 p ₂₄	<i>p</i> ₉	1 p ₂₅
<i>p</i> ₁₀	P26	<i>p</i> ₁₁	P27
p ₁₂	P ₂₈	p ₁₃	P29
P14	P30	P15	D21

C	Cluster Node N3			
Soc	Socket 0		Socket 1	
To	T ₁	T ₀	<i>T</i> ₁	
p_0	1 p ₁₆	<i>p</i> 1	p17	
P2	P18	<i>p</i> ₃	<i>P</i> 19	
p_4	1 p ₂₀	<i>p</i> ₅	1 <i>p</i> ₂₁	
p_6	p ₂₂	p7	P ₂₃	
p_8	1 p ₂₄	<i>p</i> ₉	1 p ₂₅	
<i>p</i> ₁₀	P26	<i>p</i> ₁₁	P27	
P12	1 P28	P13	P29	
D14	D20	D15	Dat	

CI	uster l	Vode I	N4
Sock	ket 0	Soci	ket 1
T ₀	<i>T</i> ₁	T ₀	<i>T</i> ₁
p_0	p 16	<i>p</i> 1	p17
<i>p</i> ₂	P 18	<i>p</i> ₃	p 19
p_4	p ₂₀	<i>p</i> ₅	1 <i>p</i> ₂₁
p_6	p ₂₂	p7	P23
p_8	p ₂₄	<i>p</i> ₉	1 p ₂₅
<i>p</i> ₁₀	p ₂₆	<i>p</i> ₁₁	P27
P ₁₂	P ₂₈	P13	P29
p ₁₄	p ₃₀	<i>p</i> ₁₅	P31

CI	uster I	Node	N5
Soci	ket 0	Soc	ket 1
T_0	<i>T</i> ₁	To	<i>T</i> ₁
p_0	p ₁₆	<i>p</i> 1	P17
p2	<i>p</i> ₁₈	<i>p</i> ₃	<i>P</i> 19
p_4	1 p ₂₀	<i>p</i> ₅	1 p ₂₁
p_6	P22	p7	p ₂₃
p_8	1 p ₂₄	p_9	1 p ₂₅
<i>p</i> ₁₀	P26	<i>p</i> ₁₁	p 27
P12	P ₂₈	P13	P29
p ₁₄	P ₃₀	P ₁₅	p ₃₁

Cluster Node N0			
Socket 0	Socket 1		
T_0 ; T_1	T_0 ; T_1		
p0 p16	p1 p17		
p2 p18	p3 p19		
$p_4 + p_{20}$	p ₅ + p ₂₁		
p6 p22	p7 p23		
p8 1 p24	p9 1 p25		
p10 p26	p11 p27		
p12 p28	P13 P29		
$p_{14} \mid p_{30}$	p ₁₅ p ₃₁		

CI	uster l	Node I	N1
Sock	ket 0	Soci	ket 1
T ₀	<i>T</i> ₁	T ₀	T ₁
p_0	P 16	<i>p</i> ₁	p17
<i>p</i> ₂	p ₁₈	<i>p</i> ₃	p ₁₉
p_4	p ₂₀	<i>p</i> ₅	1 <i>p</i> ₂₁
p ₆	P22	p7	P23
<i>p</i> 8	P24	<i>p</i> ₉	1 <i>p</i> 25
<i>p</i> ₁₀	p ₂₆	<i>p</i> ₁₁	P27
p ₁₂	P ₂₈	P ₁₃	p ₂₉
p ₁₄	P ₃₀	P ₁₅	P31

1	CI	uster I	Node	N2
	Soch	ket 0	Soc	ket 1
	T ₀	<i>T</i> ₁	T ₀	T ₁
	<i>p</i> ₀	p 16	<i>p</i> 1	p17
	<i>p</i> ₂	p ₁₈	<i>p</i> ₃	P19
	p4 1	p ₂₀	<i>p</i> ₅	1 <i>p</i> ₂₁
	p_6	P22	p7	P23
	p8 1	P24	<i>p</i> 9	1 <i>P</i> 25
	<i>p</i> ₁₀	p ₂₆	<i>p</i> ₁₁	P27
	p ₁₂	p ₂₈	p ₁₃	p ₂₉
	p14	P30	P15	P ₃₁

Cluster Node N3				
Soc	ket 0	Soc	ket 1	
T ₀	<i>T</i> ₁	T ₀	<i>T</i> ₁	
p_0	P16	<i>p</i> 1	<i>p</i> ₁₇	
p2	P ₁₈	<i>p</i> ₃	p ₁₉	
p_4	P20	<i>p</i> ₅	p ₂₁	
p_6	p ₂₂	p7	p ₂₃	
p ₈	1 <i>P</i> 24	<i>p</i> 9	P25	
<i>p</i> ₁₀	P26	<i>p</i> ₁₁	P27	
p ₁₂	P ₂₈	p ₁₃	p ₂₉	
<i>p</i> ₁₄	P30	P ₁₅	P ₃₁	

Cluster Node N4				
Sock	ket 0	Sock	cet 1	
T ₀	<i>T</i> ₁	T ₀	T_1	
p_0	p 16	<i>p</i> 1	p 17	
p_2	p ₁₈	p_3	p ₁₉	
p_4	p ₂₀	<i>p</i> ₅	p ₂₁	
p_6	p ₂₂	p7	P23	
<i>p</i> 8	P24	<i>p</i> ₉	P25	
<i>p</i> ₁₀	p ₂₆	<i>p</i> ₁₁	P 27	
p ₁₂	P ₂₈	P13	p ₂₉	
p ₁₄	p ₃₀	p15	P31	

Cluster I	Node N5
Socket 0	Socket 1
T ₀ ; T ₁	T ₀ ; T ₁
p0 p16	p1 p17
p2 p18	P3 P19
$p_4 + p_{20}$	p5 + p21
p ₆ p ₂₂	p7 p23
p8 + p24	p9 1 p25
p10 p26	p11 p27
p12 p28	P13 P29
p ₁₄ p ₃₀	p15 p31

∫parallel IO NoSQL

Cluster Node N0				
Socl	ket 0	Sod	ket 1	
T ₀	<i>T</i> ₁	T ₀	<i>T</i> ₁	
p_0	<i>p</i> ₁₆	<i>p</i> 1	P17	
<i>p</i> ₂	p ₁₈	<i>p</i> ₃	p ₁₉	
p_4	1 p ₂₀	<i>p</i> ₅	1 p ₂₁	
p_6	P22	p7	p ₂₃	
<i>p</i> 8	1 <i>p</i> ₂₄	<i>p</i> 9	P25	
<i>p</i> ₁₀	P26	p11	p 27	
p ₁₂	P ₂₈	P ₁₃	p ₂₉	
p_{14}	P ₃₀	P ₁₅	p ₃₁	

CI	uster I	Node I	N1	Clu
Soch	ket 0	Soci	ket 1	Sock
T ₀	<i>T</i> ₁	T ₀	T ₁	T ₀
p_0	P 16	<i>p</i> 1	1 p17	p0 '
p_2	p ₁₈	p_3	p ₁₉	<i>p</i> ₂
p_4	p ₂₀	<i>p</i> ₅	1 <i>p</i> ₂₁	p4 1
p ₆	P22	p7	P23	p_6
p ₈	P24	<i>p</i> 9	1 <i>p</i> 25	<i>р</i> 8 і
<i>p</i> ₁₀	p 26	<i>p</i> ₁₁	P27	P10
p_{12}	P ₂₈	p ₁₃	P29	P12
p_{14}	p ₃₀	p ₁₅	P31	p14

Cluster Node N2				
Soci	ket 0	Soc	ket 1	
T_0	T ₁	T ₀	T ₁	
p_0	1 <i>p</i> ₁₆	<i>p</i> 1	P17	
<i>p</i> ₂	<i>p</i> ₁₈	p_3	p ₁₉	
p_4	1 p ₂₀	<i>p</i> ₅	1 <i>p</i> ₂₁	
p_6	P22	p7	P23	
<i>p</i> 8	1 p 24	<i>p</i> 9	1 <i>p</i> 25	
<i>p</i> ₁₀	P26	<i>p</i> ₁₁	P27	
p ₁₂	p ₂₈	p ₁₃	p ₂₉	
p_{14}	P_{30}	p ₁₅	P ₃₁	

Cluster Node N3				
Soc	ket 0	Soc	ket 1	
T ₀	T_1	T ₀	T ₁	
p_0	P16	<i>p</i> 1	p ₁₇	
p2	<i>p</i> ₁₈	<i>p</i> ₃	p ₁₉	
p_4	1 p ₂₀	<i>p</i> ₅	1 <i>p</i> ₂₁	
p_6	P22	p7	P ₂₃	
p ₈	1 <i>P</i> 24	<i>p</i> 9	1 <i>P</i> 25	
<i>p</i> ₁₀	P26	<i>p</i> ₁₁	P 27	
p ₁₂	P ₂₈	p ₁₃	P29	
P14	P30	P15	P31	

Cluster Node N4 Socket 0 Socket 1 T0 T1 T0 T1 P0 P16 P1 P17 P2 P18 P3 P19			
CI	uster I	Vode 1	V4
Socket 0		Socket 1	
T ₀	<i>T</i> ₁	T ₀	T_1
p_0	P 16	<i>p</i> 1	P17
<i>p</i> ₂	p ₁₈	p_3	p ₁₉
p_4	p ₂₀	<i>p</i> ₅	p ₂₁
p_6	p ₂₂	p7	P23
<i>p</i> 8	P24	p9 1	p25
<i>p</i> ₁₀	p 26	<i>p</i> ₁₁	p 27
p ₁₂	P ₂₈	P13	p ₂₉
p ₁₄	p_{30}	P15	P31

Cluster Node N5						
Soci	ket 0	Socket 1				
T ₀	<i>T</i> ₁	T ₀	<i>T</i> ₁			
<i>p</i> ₀	<i>p</i> ₁₆	<i>p</i> 1	P17			
P2	p ₁₈	<i>p</i> ₃	p ₁₉			
p_4	1 p ₂₀	<i>p</i> ₅	P ₂₁			
p_6	P22	p7	P23			
<i>p</i> 8	1 <i>P</i> 24	p ₉	1 p25			
<i>p</i> ₁₀	P26	<i>p</i> ₁₁	P27			
P12	P ₂₈	P13	P29			
p ₁₄	P ₃₀	p15	p ₃₁			

+ Randomized (data-independent) LSH are 1-pass EP jobs !

DESIRED PROPERTIES

- Ability to retrieve true neighbors of any read, within a bin or nearby bins
- Ability to have balanced bin sizes
- Ability to correctly bin reads w.r.t. species/genus
- Ability to fast compute the index

Protocol

1. Build exact *k*-NN graph G_j

Protocol

- 1. Build exact k-NN graph G_j
- 2. Compute retrieved reads around x_i : $Ret_L(x_i, G_j)$

$Ret_L(x_i, \mathcal{G}_j) = \{(x_i, y) \mid d_H(h_s(y), h_s(x_i)) \leq L\} \cap E(\mathcal{G}_i)$

 $E(\mathcal{G}_i)$ is the set of edges of \mathcal{G}_i as pairs of reads.

Protocol

- 1. Build exact k-NN graph \mathcal{G}_j
- 2. Compute retrieved reads around x_i : $Ret_L(x_i, G_j)$
- 3. Compute $LB_L(\mathcal{H}_s)$, $EB_L(\mathcal{H}_s)$, $UB_L(\mathcal{H}_s)$, $Ret_{succ_L}(\mathcal{H}_s, \mathcal{G}_j)$

$$LB_L(\mathcal{H}_s) = \frac{1}{n} \min_{x_i} |\{x \mid d_H(h_s(x), h_s(x_i)) \leq L\}|$$

 \rightarrow corresponds to the (empirical) smallest search space ratio, parameterized by L radius of a ball in hamming space.

Protocol

- 1. Build exact *k*-NN graph G_j
- 2. Compute retrieved reads around x_i : $Ret_L(x_i, G_j)$
- 3. Compute $LB_L(\mathcal{H}_s)$, $EB_L(\mathcal{H}_s)$, $UB_L(\mathcal{H}_s)$, $Ret_{succ_L}(\mathcal{H}_s, \mathcal{G}_j)$

$$EB_{L}(\mathcal{H}_{s}) = \frac{1}{n} \underset{x_{i}}{\operatorname{avg}} |\{x \mid d_{H}(h_{s}(x), h_{s}(x_{i})) \leq L\}|$$

 \rightarrow corresponds to the (empirical) expected search space ratio, parameterized by L radius of a ball in hamming space.

Protocol

- 1. Build exact *k*-NN graph G_j
- 2. Compute retrieved reads around x_i : $Ret_L(x_i, G_j)$
- 3. Compute $LB_L(\mathcal{H}_s)$, $EB_L(\mathcal{H}_s)$, $UB_L(\mathcal{H}_s)$, $Ret_{succ_L}(\mathcal{H}_s, \mathcal{G}_j)$

$$UB_{L}(\mathcal{H}_{s}) = \frac{1}{n} \max_{x_{i}} |\{x \mid d_{H}(h_{s}(x), h_{s}(x_{i})) \leq L\}|$$

 \rightarrow corresponds to the (empirical) largest search space ratio, parameterized by L radius of a ball in hamming space.

Protocol

- 1. Build exact k-NN graph \mathcal{G}_j
- 2. Compute retrieved reads around x_i : $Ret_L(x_i, G_j)$
- 3. Compute $LB_L(\mathcal{H}_s)$, $EB_L(\mathcal{H}_s)$, $UB_L(\mathcal{H}_s)$, $Ret_{succ_L}(\mathcal{H}_s, \mathcal{G}_j)$

$$Ret_{succ_L}(\mathcal{H}_s,\mathcal{G}_j) = \frac{1}{n.k}\sum_{x_i} |Ret_L(x_i,\mathcal{G}_j)|$$

 \rightarrow corresponds to the set of correctly identified neighborhood relations (True Positives) among all reads.

Protocol

- 1. Build exact k-NN graph G_j
- 2. Compute retrieved reads around x_i : $Ret_L(x_i, G_j)$
- 3. Compute $LB_L(\mathcal{H}_s)$, $EB_L(\mathcal{H}_s)$, $UB_L(\mathcal{H}_s)$, $Ret_{succ_L}(\mathcal{H}_s, \mathcal{G}_j)$

$$\textit{EBI}_{\textit{L}} = \frac{\textit{Ret}_{\textit{succ}_{\textit{L}}}(\mathcal{H}_{\textit{s}},\mathcal{G}_{j})}{\textit{EB}_{\textit{L}}(\mathcal{H}_{\textit{s}})} \; ; \; \textit{UBI}_{\textit{L}} = \frac{\textit{Ret}_{\textit{succ}_{\textit{L}}}(\mathcal{H}_{\textit{s}},\mathcal{G}_{j})}{\textit{UB}_{\textit{L}}(\mathcal{H}_{\textit{s}})}$$

 \rightarrow also called idx_MPLmean (idx_MPLmax respectively) in the following plots. It corresponds to a *MultiProbing ANN performance index*.

MC5 - 5 species, 3 genuses, 25K reads, b = 4, 5-NN

■idx_MP0max ■idx_MP0mean =idx_MP1max ■idx_MP1mean ■idx_MP2max ■idx_MP2mean

Ceatech

MC5 - 5 species, 3 genuses, 25K reads, b = 4, 100-NN

■idx_MP0max ■idx_MP0mean =idx_MP1max ■idx_MP1mean ■idx_MP2max =idx_MP2mean

BIN SIZES BALANCE

Protocol

- 1. Compute bin sizes: $Counts(\mathcal{H}_s)$
- 2. Compute summary statistics (*min*, *max*, *mean*, *<u>sd</u>, <i>med*) of $Counts(\mathcal{H}_s)$

BIN SIZES BALANCE

MC5 - 5 species, 3 genuses, 25K reads, b = 7

BIN SIZES BALANCE

MC10 - 10 species, 10 genuses, 50K reads, b = 7

BIN SIZES BALANCE

MC100 - 100 species, \leq 67 genuses, 500K reads, b = 7

MC100 - 100 species, \leq 67 genuses, 500K reads, b = 4, SimHash

Codes

2018-11-28 | InTheArt@CEA | Jacques-Henri Sublemontier | 33

MC100 - 100 species, \leq 67 genuses, 500K reads, b = 8, SimHash

Codes

BIN SIZES BALANCE

MC100 - 100 species, \leq 67 genuses, 500K reads, b = 16, SimHash

Codes

MC100 - 100 species, \leq 67 genuses, 500K reads, b = 4, SimHash - complete orthonormal

Codes

2018-11-28 | InTheArt@CEA | Jacques-Henri Sublemontier | 33

MC100 - 100 species, \leq 67 genuses, 500K reads, b = 8, SimHash - complete orthonormal

Codes

MC100 - 100 species, \leq 67 genuses, 500K reads, b = 16, SimHash - complete orthonormal

Codes

Protocol

1. Compute binning scores (*Precision*, *Homogeneity*) of \mathcal{H}_s at species and genus level

$$\textit{Precision}(\mathcal{H}_s, \mathcal{C}) = \left(\sum_k \max_c T_{ck}\right) / n$$

T: confusion matrix hashcodes in $\mathcal{H}_s \times$ classes in \mathcal{C} *T_{ck}*: number of objects from class *c* (species) hashcoded by *k*

Protocol

1. Compute binning scores (*Precision, Homogeneity*) of \mathcal{H}_s at species and genus level

$$Homogeneity(\mathcal{H}_{s}, \mathcal{C}) = 1 - \frac{\sum_{k} \sum_{c} \frac{T_{ck}}{n} \log \frac{T_{ck}}{\sum_{c} T_{ck}}}{\sum_{c} \sum_{k} \frac{T_{ck}}{n} \log \frac{\sum_{k} T_{ck}}{n}}$$

- *T*: confusion matrix hashcodes in $\mathcal{H}_s \times$ classes in \mathcal{C}
- T_{ck} : number of objects from class c (species) hashcoded by k

MC5 - 5 species, 3 genuses, 25K reads, b = 8

TIME PERFORMANCE

Protocol

- 1. Compute binning time in a parallel setting
- 2. Provide an estimate for sequential time

MC100 - 100 species, \leq 67 genuses, 500K reads, b = 16, parallel time (seconds)

Ceatech

MC100 - 100 species, \leq 67 genuses, 500K reads, b = 16, sequential time (seconds)

CONCLUSION AND FUTURE WORK

- Exploit LSH indexes for reads clustering
- Implement and test multi-index search algorithms
- Introduce learning, explore semi-supervised extensions
- Visualizing LSH indexes

CONCLUSION AND FUTURE WORK

- Exploit LSH indexes for reads clustering
- Implement and test multi-index search algorithms
- Introduce learning, explore semi-supervised extensions
- Visualizing LSH indexes

SPHERICAL LSH¹⁶

Idea

- Partition the surface of the *b*-dimensional hypersphere (S^{*b*-1})
- Leverage regular structures in *b*-dimensional space ⇒ regular polytopes (simplex, orthoplex and hypercube only for *b* ≥ 5)
- Hashing is performed by identifying the closest vertex of the chosen regular polytope ∀x ∈ X

¹⁶Kengo Terasawa and Yuzuru Tanaka. "Spherical LSH for Approximate Nearest Neighbor Search on Unit Hypersphere." In: WADS. ed. by Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh. Vol. 4619. Lecture Notes in Computer Science. Springer, Aug. 24, 2007, pp. 27–38. ISBN: 978-3-540-73948-7. URL: http://dblp.uni-trier.de/db/conf/wads/wads2007.html#TerasawaT07.

SPHERICAL LSH¹⁷

Idea

- Remains a data-independent approach that involve randomization in terms of a random rotation applied to the regular polytope
- Then hashing is obtained by assigning the closest vertex id among the vertices of the regular polytope

Let $\{v_1, v_2, \dots, v_N\}$ with $||v_i||_2^2 = 1, \forall v_i$, the set of vertices that forms a regular polytope in \mathbb{R}^b , and $G \in \mathbb{R}^{b \times b}$ a rotation matrix $(G^\top G = I_b)$

$$h(x) = \underset{i}{\operatorname{argmin}} ||Gv_i - x||_2^2$$

¹⁷Kengo Terasawa and Yuzuru Tanaka. "Spherical LSH for Approximate Nearest Neighbor Search on Unit Hypersphere." In: WADS. ed. by Frank K. H. A. Dehne, Jörg-Riddiger Sack, and Norbert Zeh. Vol. 4619. Lecture Notes in Computer Science. Springer, Aug. 24, 2007, pp. 27–38. ISBN: 978-3-540-73948-7. URL: http://dblp.uni-trier.de/db/conf/wads/wads2007.htmlHTerasawaT07.

¹⁸Kengo Terasawa and Yuzuru Tanaka. "Spherical LSH for Approximate Nearest Neighbor Search on Unit Hypersphere." In: *WADS*. ed. by Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh. Vol. 4619. Lecture Notes in Computer Science. Springer, Aug. 24, 2007, pp. 27–38. ISBN: 978-3-540-73948-7. URL: http://dblp.uni-trier.de/db/conf/wads/wads2007.html≹TerasawaT07.

SPHERICAL LSH¹⁸

¹⁸Kengo Terasawa and Yuzuru Tanaka. "Spherical LSH for Approximate Nearest Neighbor Search on Unit Hypersphere." In: *WADS*. ed. by Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh. Vol. 4619. Lecture Notes in Computer Science. Springer, Aug. 24, 2007, pp. 27–38. ISBN: 978-3-540-73948-7. URL: http://dblp.uni-trier.de/db/conf/wads/wads2007.html≹TerasawaT07.

¹⁸Kengo Terasawa and Yuzuru Tanaka. "Spherical LSH for Approximate Nearest Neighbor Search on Unit Hypersphere." In: *WADS*. ed. by Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh. Vol. 4619. Lecture Notes in Computer Science. Springer, Aug. 24, 2007, pp. 27–38. ISBN: 978-3-540-73948-7. URL: http://dblp.uni-trier.de/db/conf/wads/wads2007.html≹TerasawaT07.

ITERATIVE QUANTIZATION 19

Idea

- Follow the idea of spherical LSH but introduce (unsupervised) learning yielding a data-dependent approach
- Learn the rotation (of an hypercube) that best fit the data lying on the hypersphere instead of randomly rotating it

¹⁹Y. Gong et al. "Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-Scale Image Retrieval". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 35.12 (2013), pp. 2916–2929. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2012.193.

ITERATIVE QUANTIZATION²⁰

$$Y = GX ; X \in \mathbb{R}^{p \times n} ; G \in \mathbb{R}^{b \times p}$$
$$G = RG' ; R \in \mathbb{R}^{b \times b}, R^{\top}R = I_b ; G' = \operatorname*{argmax}_{\{P \in \mathbb{R}^{b \times p}, P^{\top}P = I_b\}} ||PX||^2 (PCA)$$

We aim to solve :

$$R = \underset{R'}{\operatorname{argmin}} ||\operatorname{sign}(Y) - R'G'X||_{F}^{2} ; R'^{\top}R' = I_{b}$$

sign applies sign component-wise on each matrix element

$$\operatorname{sign}(Y_{ij}) = \begin{cases} 1 & \text{if } Y_{ij} \ge 0\\ -1 & \text{otherwise} \end{cases}$$

²⁰Y. Gong et al. "Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-Scale Image Retrieval". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 35.12 (2013), pp. 2916–2929. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2012.193.

ITERATIVE QUANTIZATION²¹

$$R = \underset{R',Y}{\operatorname{argmin}} ||\operatorname{sign}(Y) - R'G'X||_F^2 ; \ R'^\top R' = I_b$$

Let R be a random rotation matrix

- Fix R, compute sign(Y) = sign(R'G'X) (recall that G'X is the projected X on the subspace spanned by the top b leading eigenvectors)
- 2. **Fix** *Y*, compute $R = \underset{R'}{\operatorname{argmin}} ||\operatorname{sign}(Y) R'G'X||_F^2$; $R'^{\top}R' = I_b$ $\Rightarrow \operatorname{Let} Y' = \operatorname{sign}(Y)$, the solution involve computing the SVD yielding $R = V^{\top}U$ where *U* and V^{\top} are left (resp. right) singular vectors of the matrix $Y'X^{\top}G'^{\top}$.

²¹Y. Gong et al. "Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-Scale Image Retrieval". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 35.12 (2013), pp. 2916–2929. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2012.193.

ITERATIVE QUANTIZATION²²

²²Y. Gong et al. "Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-Scale Image Retrieval". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.12 (2013), pp. 2916–2929. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2012.193.

ITERATIVE QUANTIZATION²²

²²Y. Gong et al. "Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-Scale Image Retrieval". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.12 (2013), pp. 2916–2929. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2012.193.

DISCUSSION

- Focus on high dimensional data
- Multiple hash tables²³ vs. multi-probing
- Data-independent LSH vs. Data-dependent LSH^{24, 25}
- Fully randomized vs. learned hash functions
- Short vs. long codes
- Preconditionner (HD) + Structured (fast) subspace projection + Learned rotation become a standard for data-dependent hashing

²⁵J. Wang et al. "A Survey on Learning to Hash". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* PP.99 (2018), pp. 1–1. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2017.2699960.

²³M. Norouzi, A. Punjani, and D. J. Fleet. "Fast Exact Search in Hamming Space With Multi-Index Hashing". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 36.6 (2014), pp. 1107–1119. ISSN: 0162-8828. DOI: 10.1109/TPRMT.2013.231.

²⁴ J. Wang et al. "Learning to Hash for Indexing Big Data – A Survey". In: *Proceedings of the IEEE* 104.1 (2016), pp. 34–57. ISSN: 0018-9219. DOI: 10.1109/JPROC.2015.2487976.

jacques-henri.sublemontier@cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www.bist.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019