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Gentle Introduction to Bigdata and Machine Learning
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How big are the data?

y 25 petabytes peryear—25.000 1TB hard disks

X/

n 100 Petabytes Since 2012 in videos and photos
Daily: 2.7 billion likes

a Estimated from historical data of customers

E 10 Exabytes from billions of requests

These data are definitely “Big”
— Is this relevant for every business?
— What is “Big Data”?



Storage Resources

Storage capacity has increased massively over the years, BUT not access speeds
1 disktoread 1TB (100 Mb/s) 25 minutes

— > Evenmore to write

Solution: multiple disks in parallel

100 drives -> less than two minutes toread 1TB

— In one machine? How big?

— What about protection from hardware failure (20%/4 years)?

— Data Storage is not trivial!



Distributed File System

* One Machine does not scale
— Instead many working as one
« |f you want more resources add more machines
« Hadoop Distributed File System
— The most popular technology for Big Data

— The machines don'’t have to be uniform ¢
— More than just the file system Qe

° I\/Iap—Reduce m&m
— major Big Data technologies built on top of Hadoop
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Machine learning

« Tom Mitchell(1998): Well-posed Learning Problem: A
computer program is saidto learn from experience E with
respect to some task T and some performance measure P, if

its performance on T, as measured by P, improves with
experience k.

email spam learning

« Task:email classificationto spam/no-spam

* Experience: the user’s action to characterize emails

» Performance: # of emails characterized as spam correctly.



Applications of Machine Learning

« Textor document classification, e.g., spam detection;

« Naturallanguage processing, e.g., morphological analysis, part-of-
speech tagging, statistical parsing, named-entity recognition

« Recommendation systems, search engines, information extraction
systems

« Fraud detection (credit card, telephone) and network intrusion
« Speechrecognition, speech synthesis, speaker verification;
« Optical character recognition (OCR);

- Computational biology applications, e.g., protein function or structured
prediction, Medical diagnosis;

« Computer vision tasks, e.g., image recognition, face detection;
« (Games, e.g., chess, backgammon;
« Unassisted vehicle control (robots, navigation);



ML Tasks

Main Tasks
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Machine Learning example

Red and blue dots - training set

e Red/Blue - labels/classes

e Features: the space in which the training set is
embedded (i.e. the (x,y) coordinates for this
example)

e Objective: Learn a model (a function) f that
based on the position of a sample decides the
class of the point.

o Test sample: Examples to evaluate the

performance of a learning algorithm - separate
from the training and not made available in the

learning stage



Machine Learning example %

» Loss function: A function L that measures the error, or loss, between a predicted
and a true label. If y/y’the true/predicted labels:

— Square loss:
g B Z

— Other loss functions: Hlnge Logistic, Cross entropy...
« Hypothesis set: set of functions mapping features to labels (i.e. points to blue/red)

« Qver fitting vs generalization: a function may be consistent (i.e. zerotraining error)
but not generalize well.




Machine Learning example

» Cross-validation: inmany cases there ° %°
are not enough training data.

— Split the m data inton

subsets(folds) and let 6 the model (== [ [em el wm]
parameters

— Train the algorithmfor n-1 folds and
test on the n-th

— Compute the cross validation error
— Choose parameters 6 that
minimize the cv. error

train | train | train | train | test

. 1 n 1 m;
Rev(0) = > p— > L(hi(@ij), yij) -
i=1 ' j=1

error of h; on the ith fold



Error Optimization- gradient descent

» Learning & Optimization: Assume J(0) the objective error function, 6 hypothesis
parameters.

« QObjective: find 6 that minimizes J(0):

— update the parameters in the opposite direction of the gradient of the objective
function: VJ(0) w.r.t. to the parameters

— Batch gradient descent

0=0—n7eJ(0)

— 1 the learning rate

— Redundant computations: as it recomputes gradients for similar examples
before each parameter update.



« Graph Degeneracy

» Applications
— Social/Citation networks
— Text Mining



Graphs are ubiquitous!

;,’-’_ N
(a) Internet (b) World Wide Web (c) Email network
B |
:;| \\ i'
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(d) Protein interactions (e) Collaboration network (f) Citation network



Collaboﬁﬁon networks
Online Social Networks (Co-authorship) . -

Source: https://www.facebook.com/zuck

Term co-occurrence netwqrk r

Weblogs metwork - - . | _ o (David Copperfield novel by
(Political blogs) . Charles Dickens)




information retrieval is the activity of obtaining
information resources relevant to an information need

T 7 the

from a collection of information resources
; =«

retrieval

“Graph of word approach for ad-hoc information retrieval”, F. Rousseau, M. Vazirgiannis,
Best paper mention award ACM CIKM 2013



Core decomposition in networks




k-Core Decomposition

» Degeneracy for an undirected graph G
« Also known as the k-core number
» The k-core of G is the largest subgraph in which every vertex has degree

at least k within the subgraph
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Also known as graph degeneracy

Important property:

* Fastand easy to compute

» Linearto the size of the graph
Scalable to large scale graphs

@ Core numberc; =1

@ Core number ¢; = 2

@® Core numberc¢; = 3

Graph Degeneracy 6*(G) =3
Note:

The degeneracy and the size of
the k-core provide a good
indication of the cohesiveness of
the graph

Go=G
G, = l-core of G
Gy = 2-coreof G

Gy = 3-coreof G

Go2G2G22Gg

CEA 21



Algorithm for k-Core Decomposition

Algorithm k-core(G, k)

Input: An undirected graph G and positive integer k

Output: k-core(G)

l.letF:=G

2. while there is a node x in F such that degg(x)<k
delete node x from F

3.return F

» Many efficient algorithms have been proposed for the computation
» Time complexity: O(m)

[Batageljand Zaversnik, ‘03]

CEA
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K-truss Decomposition (Triangles)

o K-truss decomposition [cohen'08], [Wang and Cheng ‘12]
— Triangle-based extension of the k-core decomposition

— Each edge of the K-truss subgraph participates in at
least K-2 triangles

« Informally, the “core” of the maximal k-core subgraph

» Subgraph of higher coherence compared to the k-
core

Trussset T

CEA 23



« Graph Degeneracy

» Applications
— Social/Citation networks
— Text Mining

« Graph Similarity — Kernels



k-core for directed networks kais2014]

Directed graphs:
— Wikipedia
— DBLP - Citation network

» |s there a degeneracy notion for directed graphs?

« We extend the k-core concept in directed graphs by applying a limit on
in/out edges respectively
— This provides a two dimensional range where cores degenerate

» Trade off between infout edges can give us a more specific view of the
cohesiveness and the “social” behavior



D-core matrix of the DBLP graph

outlinks

50 I I I I I I I I I I |
0 5 10 15 20 25 30 35 40 45 50 55

>30k >10k >5k >3k >2k >1k >700 >600 >450 >300 >0
| | | | | | |
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Further resources

Aminer contribution
« https://bitbucket.org/xristosakamad/aminer dcores/src/master/

Demo-CS
» http://moodle.lix.polytechnigue.fr/dcore_demo




Graph degeneracy related papers

« Extensions of graph degeneracy for weighted [ASONAM2011], directed
[ICDM2011][KAIS2014][KDD2012], signed [SDM2013] graphs

« Graph degeneracy for clustering [AAAI2014]

» Graph anonymization [KAIS2017][KAIS 2018]

 Influence maximization [WWW2016][Nature/Scientific reports 2016]
e Graph Similarity [IJCAI2018]




« Graph Degeneracy

» Applications
— Social/Citation networks
— Text Mining



Graph-based text representations




Graph Semantics

« Let G =(V, E) be the graph that corresponds to a document d

 The nodes can correspond to:
— Paragraphs
— Sentences
— Phrases
— Words [Main focus of the tutorial]
— Syllables

« The edges of the graph can capture various types of
relationships between two nodes:

— Co—occlz]urrence within a window over the text [Main focus of the
tutoria

— Syntactic relationship
— Semantic relationship

CEA



Example of Unweighted GoW

| Data Science is the extraction|of knowledge from large volumes of data

that are structured or unstructured which is a continuation of the field of

data mining and predictive analytics, also known as knowledge discovery
and data mining.

predict

II
\
\
1
structur
| ~\

1
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1
‘ 1
1
T
. J
|
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.____ o —
|

|| 4
\

analyt —__

w=3

unweighted, undirected graph

[Rousseauand Vazirgiannis, CIKM’13 best paper mention award]
CEA
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Example of Weighed Undirected GoW

Mathematical aspects of computer—aid
computer-aided share trading.
We consider problems of D aspect

statistical analysis of share

prices and propose problem
probabilistic characteristics fo

describe the price series. We

discuss three methods of

mathematical modelling of -
price series with given statist
probabilistic characteristics. U
Edge weights mathemat trade
1
2 ﬁhare
3
4 .
ce
S "
probabilist analysi
[] characterist
seri
model
[l method

CEA



Single Document Keyword Extraction

Keywords are used everywhere

* Looking up information on the Web (e.g., via a search engine bar)
» Finding similar posts on a blog (e.g., tag cloud)

» For ads matching (e.g., AdWords’ keyword planner)

» For research paper indexing and retrieval (e.g., SpringerLink)

» For research paper reviewer assignment

Applications are numerous

« Summarization (to get a gist of the content of a document)
Information filtering (to select specific documents of interest)
Indexing (to answer keyword-based queries)

Query expansion (using additional keywords from top results)

CEA 36



Graph-based Keyword Extraction (1/2)

Existing graph-based keyword T e T
extractors:

- Assign a centrality based score to a node
- Top rankedones will correspond to the
most representative

- TextRank (PageRank) [Mihalcea and Tarau,
EMNLP ‘04]

- HITS [Litvak and Last, MMIES ‘08]
- Node centrality (degree, betweenness, N
eigenvector) [Boudin, UNLP13] k-core decomposition of the graph

|dea: retain the k-core subgraph of the graph to extract the
nodes based on their centrality and cohesiveness

CEA 37



Graph-based Keyword Extraction (2/2)

m-dimensional lambda matrices.
A system of linear algebraic equations with m-dimensional lambda ma-
trices is considered. The proposed method of searching for the solution

® S i n g | e_ d O C u m e nt k eyWO r d [of this system lies in reducing it to a numerical system of a special kind.
extraction ‘
— Select the most cohesive imension

sets of words in the graph as
keywords

— Use k-core decomposition to
extract the main core of the
gl’aph ‘ algebra

— Weighted edges

A method for solution of systems of linear algebraic equations with]

kind
Keywords manually assigned by human annotators
linear algebra equat; numer system; m-dimension lambda matric
[Rousseau and Vazirgiannis, ECIR “15] ”

CEA



PageRank vs. k-core

special

kind

[Ke,\words manually assigned by human annotators

linear algebra equat; numer system; m-dimension lambda matric]

WK-core PageRank
system 6 | system 1.93
matric 6 | matric 1.27
lambda | 6 | solut 1.10
linear 6 | lambda | 1.08
equat 6 | linear 1.08
algebra | 6 | equat | 0.90 |
m-dim... | 6 | algebra | 0.90

' method | 5 | m-dim... | 0.90
solut 5 | propos 0.89
propos 4 | method 0.88
numer 3 | special 0.78
specia 2 | numer 0.74
kind 2 | kind 0.55

CEA
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How Many Keywords?

« Most technigues in keyword extraction assign a score to each feature
and then take the top ones

« But how many?
— Absolute number (top X) or relative number (top X%)?

« Besides, at fixed document length, humans may assign more
keywords for a document than for another one

X'is decided at document level (size of the k-core
Sy bg raph) k-coves are adaptive

CEA 40



Performance Evaluation

100 -

+ PageRank 40- £5 PageRank
. . . Egzgre E3 Human annotators
R 2 « Weighted K-core E3 Weighted K—-core
a_q -
Precision I g,
%,
g w :
Recall < Y g
2 =a s —L
2 EWAN 8
F1-score 8 BN g = ‘
o B, \ 3 [—
2_g o0
Precision/recall NS
% .. 10
°s
‘e
-\
40- . 0-
o 2‘5 5‘0 7‘5 1 60 [6,‘23] (23135] (35:45] (45:84]
Recall (%) Document length (binned by quartile)
Macro-averaged precision (%) Macro-averaged recall (%) Macro-averaged F1-score (%)

Graph | Dataset

PageRank| HITS |K—core|WK—core PageRank| HITS |K—core|WK—core PageRank| HITS |K—core|WK—c0re

undirected [Hulth2003|| 58.94 | 57.86 | 46.52 | 61.24* 42.19 | 41.80 |62.51*| 50.32* 47.32 | 46.62 |49.06* | 51.92*
edges |Krapi2009| 50.23 | 49.47 | 40.46 | 53.47* 48.78 | 47.85 |78.36*| 50.21 49.59 | 47.96 | 46.61 | 50.77*

forward |Hulth2003| 55.80 54.75 | 42.45 | 56.99* 41.98 40.43 |72.87*| 46.93* 45.70 | 45.03 |51.65*| 50.59*
edges |Krapi2009| 47.78 | 47.03 | 39.82 | 52.19* 44.91 44.19 |79.06*| 45.67 45.72 | 44.95 | 46.03 | 47.01*

backward |Hulth2003|| 59.27 | 56.41 | 40.89 | 60.24* 42.67 | 40.66 |70.57*| 49.91* 47.57 | 45.37 | 45.20 | 50.03*
edges |Krapi2009| 51.43 |49.11 | 39.17 | 52.14* 49.96 | 47.00 |77.60*| 50.16 50.51 | 47.38 | 46.93 | 50.42

CEA 4



GoWovis visualization tool




GoWovis Visualization Tool

A method for solution of systems of linear algebraic equations with m-dimensional lambda matrices. A system of linear algebraic e
matrices is considered. The proposed method of searching for the solution of this system lies in reducing it to a numerical system ¢

Parameters Select by core_.no ~

—
Text Graph propos \
‘/' / 2
building /.\ \
matric 2
mining method %
\\
Window size 1
2.\ m-dimen 51on
2 16 |
3 olu T 2 |

Build on processed

® @ o

system
text? \ 2 4 algebra
\‘ )/
Yes v [
3 numgr 1 1
Overspan sentences? “1\
Yes v 2
special 1
kind
Color

https://safetyapp.shinyapps.io/GoWvis/

[Tixier etal., ACL “16]
CEA



» Builds a graph-of-words and displays an interactive
representation of any text pasted by the user

» Allows the user to tune many parameters:
— Text pre-processing (stopword removal, ...)
— Graph building (window size, ...)

— Graph mining (node ranking and community
detection algorithms, ...)

» Extracts keyphrases and generates a summary of the input
text

« Built in R Shiny withthe visNetwork library

https://safetyapp.shinyapps.io/GoWvis/

CEA



Other efforts with GoW for NLP

« Extractive summarization [EACL2017][ACL2018]
« Event Detection in twitter streams [ECIR2018][AAAI-ICWSM2015]



« Graph Degeneracy

» Applications
— Social/Citation networks
— Text Mining

« Graph Similarity — Kernels



GraKel - Python package extension for graph similarity

Implemented kernels in Grakel
« GraKel is a Python package extension for graph Core Kernel Framework
kernels. *Edge Histogram Kernel
*Graph Hopper Kernel
*GraphletSampling Kernel

» Projectis currently under alpha development stage and

is uploaded on pypi-test. Hadamard Code Kernel
« Code: https://github.com/ysig/GraKel tree/develop. "Kernel (general class)

L . . : *Lovasz Theta Kernel
Documentation: https://ysig.github.io/GraKel /dev/. -Multiscale Laplacian Kernel

Paper: https://arxiv.org/abs/1806.02193. -Neighborhood Hash Kernel

*Neighborhood Subgraph
Pairwise Distance Kernel
ODD-STh Kernel

*The Propagation Kernel
*Pyramid Match Kernel
‘Random Walk Kernel
*Shortest Path Kernel
*Subgraph Matching Kernel
*SVM Theta Kernel

*Vertex Histogram Kernel
*Weisfeiler Lehman Framework




Thank You! - Questions?

Credits to my collaborators
— Dr.C. Giatsidis, (X)
— Prof. Malliaros (Ec. Centrale, Paris)
— Dr. F. Rousseau (Google)
— Dr. G. Nikolentzos (X)
— Prof. D. Thilikos (CNRS)
— Dr. M. Rossi (X)
— P. Meladianos (AUEB)

Michalis Vazirgiannis

Data Science and Mining group, Ecole Polytechnique
http://www.lix.polytechnique.fr/~mvazirg
https://www.lix.polytechnique.fr/dascim/

Twitter: @mvazirg
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