FROM RESEARCH TO INDUSTRY

www.cea.fr

Omics data analysis for high-throughput phenotyping

Etienne Thévenot et al.

CEA, LIST (Saclay, France) Laboratory for Data Analysis and Systems' Intelligence MetaboHUB

etienne.thevenot@cea.fr

http://etiennethevenot.pagesperso-orange.fr/

> Metabolomics

Cea Metabolomics workflow

Data preprocessing Flow injection analysis

Cea Liquid chromatography - mass spectrometry

Ceal Flow injection analysis - mass spectrometry

Computational metabolomics and high-throughput phenotyping | E. Thévenot | 9

The proFIA workflow

Raw files

Alexis Delabrière

Delabriere et al. (2017). proFIA: A data preprocessing workflow for Flow Injection Analysis coupled to High-Resolution Mass Spectrometry. *Bioinformatics*. 33:3767-3775.

Computational metabolomics and high-throughput phenotyping | E. Thévenot

Cea Detection of m/z bands

Cea Peak model estimation

- ➢ We proposed a model based on Kolev (1994) and Nanita (2012)
 With :
- I_A the observed intensity
- k_A a constant specific to the molecule
- *P* is exponentially modified gaussian
- *ME_A* is a second order exponential
- B_A is the baseline constant for analyte
- ϵ is the heteroscedastic noise

Intense peaks without baseline are selected and a regression is performed leading to a peak model P

This peak model is used to perform matching filtration on the signal

The match can be extended if a second maximal is found on the filter. If not, a triangular filter is used for coarser grain

A statistical test has been developed to discard signals too close to the baseline

13

Cea Application to metabolomics data

Dataset:

- plasma sample spiked with 40 molecules at 6 concentrations
- > Running time:
 - < 15 s per file</pre>
- Comparison with manual integration:
 - precision of 0.96
 - recall of 0.98
 - mean intensity error < 5%</p>

> Annotation:

211 signals out of 1082 had a unique match on HMDB

Cea The proFIA software

R package: Bioconductor (DOI:10.18129/B9.bioc.proFIA)

PhenoMeNal

Galaxy tool: Toolshed, Workflow4Metabolomics, PhenoMeNal

Publication: Bioinformatics (DOI:10.1093/bioinformatics/btx458)

> Bioinformatics doi.10.1093/bioinformatics/xxxxx Advance Access Publication Date: Day Month Year Manuscript Category

Gene Expression

proFIA: A data preprocessing workflow for Flow Injection Analysis coupled to High-Resolution Mass Spectrometry

Alexis Delabrière^{1,*}, Ulli M. Hohenester², Benoit Colsch², Christophe Junot², François Fenaille² and Etienne A. Thévenot^{1,*}

LC-MS

Preprocessing

<u>xcms.xcmsSet</u> Filtration and Peak Identification using xcmsSet function from xcms R package to preprocess LC/MS data for relative quantification and statistical analysis

<u>xcms.xcmsSet Merger</u> Merge xcms.xcmsSet xset in one to be used by group

<u>xcms.qroup</u> Group peaks together across samples using overlapping m/z bins and calculation of smoothed peak distributions in chromatographic time.

<u>xcms.retcor</u> Retention Time Correction using retcor function from xcms R package

<u>xcms.fillPeaks</u> Integrate a sample's signal in regions where peak groups are not represented to create new peaks in missing areas

<u>xcms.summary</u> Create a summary of XCMS analysis

<u>CAMERA.annotate</u> CAMERA annotate function. Returns annotation results (isotope peaks, adducts and fragments) and a diffreport if more than one condition.

CAMERA.combinexsAnnos Wrapper function for the combinexsAnnos CAMERA function. Returns a dataframe

proFIA Preprocessing of FIA-HRMS data

netaMS.runGC GC-MS data

preprocessing using metaMS package

Breathomics: real time analysis of exhaled air in disease and response to treatments

- Objective: comprehensive analysis of metabolismderived Volatile Organic Compounds (VOCs)
- Technology: PTR-TOF-MS at the patient bedside (Foch Hospital)
- Project: develop innovative algorithms and software environment for the processing of realtime analysis of VOCs in exhaled air

> Statistical analysis

Orthogonal Partial Least Squares

Cea Partial Least Squares (PLS)

- Multivariate regression approach
- Handle data sets
 - of high dimension (n < p)</p>
 - correlated variables
 - including missing values
- Based on latent variables
 - maximizing covariance with the response Y
- Developed by Wold H. and S.
- Can be used for classification (PLS-DA)

Wold et al. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58, 109–130.

> PCA finds the directions of maximum variance

PLS includes the labels into the model

FROM RESEARCH TO INDUST

ropls package: R implementation of the (O)PLS(-DA) modeling algorithms

5

0.5

0.0

0.5

0.6

HU neg 038 b2

0.7

Similarity(y, yperm)

Observation diagnostics

2

Score distance (SD)

0.8

0.9

pR2Y = 0.05, pQ2 = 0.05

Model overview

o1

Scores (OPLS-DA)

t1 (5%)

0.261

о2

4.0

0.3

2

ö

5

2.0

2

ŝ

-9

0.731

R2X

0.275

0 0

p1

HU neg 05

O2Y

0.612

Q2Y

1.0

Full diagnostics

- outliers
- permutation testing

- Full numerical and graphical results
 - R2X, R2Y, Q2Y
 - VIPs

Orthgonal distance (OD)

2

9

ŝ

0

Statistical analysisFeature selection

Feature selection: from biomarker discovery to clinical diagnostics

	Phase	Samples	Process	Numbers of analytes	Numbers of samples
Unbiased; semiquantitative	Discovery Identify candidate biomarkers	Proximal fluids Cell line supernatants Animal model plasma 'Gold standard' human plasma (reduced biological variation)	Abundant protein depletion Extensive fractionation LC-MS/MS (low throughput)	1,000s	10s
Targeted; quantitative	Qualification Confirm differential abundance of candidates in human plasma	'Gold standard' human plasma (reduced biological variation)	Abundant protein depletion Modest fractionation +/- Immunoaffinity peptide enrichment SID-MRM-LC-MS/MS (low-moderate throughput; high multiplexing)	30–100	10s
	Verification Begin to assess specificity of candidates	Population-derived human plasma (normal biological variation)	Abundant protein depletion Modest fractionation +/- Immunoaffinity peptide enrichment SID-MRM-LC-MS/MS (moderate throughput; high multiplexing)	10s	100s
	Validation and clinical assay development Establish sensitivity and specificity; assay optimization	Population-derived human plasma (normal biological variation)	Immunoassay (high throughput; low multiplexing)	4-10	Many 1,000s

Rifai *et al.* (2006). Protein biomarker discovery and validation: the long and uncertain path to clinical utility. *Nat. Biotechnol.* 24:971-983.

Restrict the list of candidates before the subsequent validation phases

- Facilitates interpretation
- Limit the risk of overfitting
- Stabilize the prediction

Cea Feature selection: challenges

> Testing all combination of features is not computationally tractable

- efficient search path
- Prediction performance
 - sensitivity, selectivity
- Stability
 - reproducibility

Relevance

selection criterion

Cea Feature selection: approaches

filter (threshold criterion)

e.g., t-test

- wrapper (iterative selection)
 - e.g., SVM RFE, Genetic Algorithm

interaction computation with classifier intensive

fast

threshold?

embedded (penalization constraint)

e.g., Lasso, Elastic Net

fast stability

Statistical analysis The *biosigner* approach

Philippe Rinaudo

- Objective: select only features which significantly contribute to the performance of the classifier
- Method: features are significant if the prediction accuracy decreases after random permutation of their values for in test samples

> Algorithm:

- 1. generate k train/test subset by resampling
- 2. build the models and rank the variables
- 3. find the largest non-significant feature subset (half-interval search)
- 4. repeat steps (1-3) on the dataset restricted to the significant features until the selection is stable (all features are significant)

<u>Rinaudo et al. (2016). biosigner: a new method for the discovery of significant</u> <u>molecular signatures from omics data. *Front. Mol. Biosci.* 3.</u>

1.1 Generate k subsets (bootstrap resampling)

1.1 Generate k subsets (bootstrap resampling)

1.2 Train F_k models (e.g. PLS-DA)

train_k

a) Rank the features (e.g. VIP)

b) Find the feature f of lowest rank such that the subset of all features of higher ranks is not significant:

i) set f to the feature of mean rank

b) Find the feature f of lowest rank such that the subset of all features of higher ranks is not significant:

ii) permute in the test set all features of higher rank (ie features in S_f)

b) Find the feature f of lowest rank such that the subset of all features of higher ranks is not significant:

iii) compare the accuracies of the predictions after permutation

iii-a) accuracy \rightarrow or \neg

=> S_f does not contain significant features

iii-a) accuracy \rightarrow or \neg

=> shift f upward to the mean rank of significant features

iii-a) accuracy \rightarrow or \neg

=> evaluate the performance after permutation of the features in S_f

iii-b) accuracy ↘

=> S_f contains significant features

iii-b) accuracy ↘

=> shift f downward to the mean rank of non-significant features

iii-b) accuracy ↘

=> evaluate the performance after permutation of the features in S_f

iv) stop when the upper and lower limits for f converge

2. Repeat whole feature selection procedure on the restricted dataset

2. Repeat whole feature selection procedure on the restricted dataset

3. Stop when the signature is stable (all features significant)

FROM RESEARCH TO INDUSTR

Selected molecular signature

FROM RESEARCH TO INDUST

Cea The biosigner software

- R package: Bioconductor (DOI:10.18129/B9.bioc.biosigner)
- Galaxy tool: Toolshed, Workflow4Metabolomics, PhenoMeNal

Bioconductor

PhenoMeNal

Publication: Frontiers in Molecular Biosciences (DOI:10.3389/fmolb.2016.00026)

ORIGINAL RESEARCH published: 21 June 2016 doi: 10.3389/fmolb.2016.00026

biosigner: A New Method for the Discovery of Significant Molecular Signatures from Omics Data

Philippe Rinaudo¹, Samia Boudah², Christophe Junot² and Etienne A. Thévenot^{1*}

т	-	_		_
	0	0	L	5

Format Conversion

Preprocessing

Normalisation

Quality Control

Statistical Analysis

<u>Anova</u> N-way anova. With ou Without interactions

1

<u>Hierarchical Clustering</u> using ctc R package for javatreeview

Univariate Univariate statistics

<u>Heatmap</u> Heatmap of the dataMatrix

ACP ellipsoid by factors

<u>Biosigner</u> Molecular signature discovery from omics data

Multivariate PCA, PLS and OPLS

Cea Sacurine dataset (MTBLS404)

- Objective: influence of age, body mass index and gender on metabolite concentrations in urine
- Cohort: 184 employees from the CEA institute
- Analytics: LTQ-Orbitrap (negative ionization mode)
- Annotation: 109 metabolites were identified or annotated at the MSI level 1 or 2
- Pre-processing:
 - XCMS followed by Quan Browser
 - Signal drift and batch effect correction
 - Normalization to the osmolality
 - log10 transformation

Cea biosigner package: model performances

		sacurine
factor	gender	
samples	183	
features	109	
signatures	[2-3]	
	PLS-DA	87% -> 89%
performances (full -> restricted)	Random Forest	86% -> 86%
	SVM	88% -> 89%

Cea diaplasma dataset

- LC-HRMS analysis of plasma
- ➢ from a cohort of 69 diabetic patients
- type 1 and type 2 patients
- ➤ 5,501 mz/RT features

Cea biosigner package: model performances

Cea biosigner package: model performances

Cea Molecular signatures

Biomarker in prostate cancer: Zhang et al. (2013). *PLoS ONE*, **8:**e65880. Taurochenodeoxycholic acid: variation in type 2 diabetic patients: Taylor et al. (2014). PLoS ONE, **9**:e93540. Cytochemical marker for the diagnosis of AML: Matsuo et al (2003). *Leukemia* **17**:1538-1543.

Cea Spiked apples

(BioMark)

> SVM highlights features with decreased concentrations in spiked samples

Ceal Comparison with alternative feature selection methods

biosigner finds mall signatures providing a good compromise between prediction accuracy, signature stability and computation time

Biosigner:

- efficient selection of significant signatures for binary classification
- easy access (R and Galaxy)
- Depends on the structure of the dataset (distribution, limit of detection, correlation)
- Validation on an independant dataset is mandatory

Importance of public datasets and code to benchmark new algorithms

> Statistics

• Data integration

ProMetIS: integration of proteomics and metabolomics data

New methods and bioinformatics tools

- statistical integration (multivariate-based approaches)
- network analysis (pathway-based approaches)
- 2 case studies:
 - high-throughput phenotyping of mouse models
 - systems microbiology
- Large consortium
 - CEA (LIST, IG, BIG), INRA (PFEM, TOXALIM), CNRS (LABGeM)
- 2 year project (« Integrative Bioinformatics » workpackages from IFB)

Perspectives:

application to human phenotyping (France Medecine Genomique 2025)

Cea Spectrum identification

Ceal Mining spectral libraries

Output:

Information about structural similarities

• Networks (GNPS, Wang, 2014)

Adenine-related Mass2Motif

m/z

Spectra 2

Cea MineMS² workflow

Ceal Running time and number of patterns

Dataset	Penicillium verrucosum	Reference library from pure compounds	
Reference	Hautbergue <i>et al.</i> 2017 <i>J Chromatogr B</i>	Metabolome IDF	
Number of spectra	91	834	
Graph building	35 s	1 min 45 s	
Pattern Mining	10 s	2 min 10 s	
Number of patterns	54	832	

Processing time is more dependent on the similarities in the datasets than of the size in the dataset.

Cea Example: sterone sub-lattice

Cea Example: sterone sub-lattice

Patterns include coarse and fine grain information

Major difference with the patterns obtained with Mass2LDA (Van der Hooft *et al.* 2016, *PNAS*) mics data analysis for high-throughpu

Exemple of generic patterns:

Ceal Relating patterns to chemical (sub-)structures

Workflow management • Workflows

Ce2 Implementation: From the method to the workflow

The workflow challenge: bridging experimenters' and bioinformaticians' talents

- Web-based
- Workflow editor
- User-friendly
- Tutorials

Reproducible science

Developers

- Multi-language
- Toolshed
- Open-source

Data acquisition and annotation is costly and time-consuming

- instruments, reactants, animal lives, your (precious) time
- In the era of data intensive sciences:
 - text (classical publication format) is not an effective way of sharing scientific information
 - computer-readable formatting is needed

Mons et al. (2011). The value of data. Nat. Genet. 43. 281-283.

Workflow managementGalaxy environment

https://galaxyproject.org

• Workflow management through a classic web browser

<u>Giardine et al. (2005). Galaxy: A platform for interactive large-scale genome analysis.</u> <u>Genome Res. 15:1451-1455.</u>

• Started in 2005; more than 55,000 users worldwide <u>Goecks et al. (2010). Galaxy: a comprehensive approach for supporting accessible, reproducible,</u> <u>and transparent computational research in the life sciences. *Genome Biol.* 11:R86.</u>

Afgan et al. (2016). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. *Nature Biotechnol.* 29:972-974.

• NGS, transcriptomics, proteomics, metabolomics

Boekel et al. (2015). Multi-omic data analysis using Galaxy. Nature Biotechnol. 33:137-139.

Guitton et al. (2017). Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. Int. J. Biochem. Cell. Biol. 93:89-101.

which they

Tool interface

	l usegalaxy.org Č	1 0 +
Galaxy Analyze Dat	a Workflow Shared Data∓ Lab∓ Visualization∓ Admin Help∓ User∓	Using 755.8 GB
Tools Search tools	Map with BWA-MEM - map medium and long reads Sectors Options (> 100 bp) against reference genome (Galaxy Version 0.7.12.1) Image: Sector 2.1	History C C III
<u>Get Data</u> <u>Send Data</u> <u>Lift-Over</u>	Use a built-in genome index Built-ins were indexed using default options. See `Indexes` section of help below	11: Combine FASTA and Image: Second
Text Manipulation Datamash Convert Formats	Using reference genome C. elegans (WS220): ce10	10: Combine FASTA and QUAL on data 8
Filter and Sort Join, Subtract and Group Fetch Alignments / Sequences	hg38 Q Sii Human (Homo sapiens) (b38): hg38	mmer on data 6 and dat
NGS: OC and manipulation NGS: Mapping	P Human (Homo sapiens) (b38): <u>hg38</u> Canonical See Human (Homo sapiens) (b38): <u>hg38</u> Canonical Female Select first set of reads	8: Sequence Content Tri mmer on data 6 and dat a 5
<u>Map with BWA-MEM</u> - map medium and long reads (> 100 bp) against reference genome	Image: Combine FASTA and QUAL on data 7 Specify dataset with forward reads	7: Du Novo: Make consen sus reads on data 4 (SSC S)
<u>Map with BWA</u> - map short reads (< 100 bp) against reference genome	Select second set of reads	6: Du Novo: Make consen sus reads on data 4 (mat e 2)
<u>Bowtie2</u> – map reads against reference genome <u>Parse blast XML output</u>	Enter mean, standard deviation, max, and min for insert lengths.	5: Du Novo: Make consen sus reads on data 4 (mat e 1)
Megablast compare short reads against htgs, nt, and wgs databases	-1; This parameter is only used for paired reads. Only mean is required while sd, max, and min will be inferred. Examples: both "250" and "250,25" will work while "250,,10" will not. See below for details.	4: Du Novo: Align familie () / X s on data 3
Map with BWA for Illumina	Set read groups information?	3: Du Novo: Make familie s on data 2 and data 1
Map with Bowtie for Illumina	Do not set	2: SRR1799908_reverse 💿 🖋 🗙
Lastz map short reads against reference sequence	by allowing combining multiple datasets. Select analysis mode	1: SRR1799908_forward ③ 🖋 🗙
S		

Afgan *et al.* (2016). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. *Nat. Biotechnol.* 29:972-974.

Workflow editor

March

Management of histories

				lin usegal	axy.org		C		Û	
Galaxy Analyze	Data Wo	rkflow	Shared Data -	Lab v V	isualization -	Admi	in Help - User -		Using 7	755.8 GB
Done search histories		8	search all datasets		•				Crea	ate new
Current History		•	Switch to			•	Switch to		•	Switch
Duplex Analysis: ABL1 24 shown			PNAS 2014 2 shown, 47 <u>deleted</u> ,	2252 <u>hidde</u> r	1		Unnamed history 2 shown			Unna 17 she
9.93 GB	•		178.99 GB		۲	•	5.7 GB		S D	157.1
search datasets	0		Mark			0	search datasets		8	sea
Drag datasets here to copy them to the curre 24: Filter on data 23	ent history		1424: MarkDuplica MarkDuplicate met	tes on colle rics	ection 470:	×	2: UCSC Main on H genome)	<u>luman: snp144 (</u>	• / ×	<u>18: ip</u>
23: Variant Annotator on data 22	• # ×		a list of datasets 1423: MarkDuplica	tes on coll	ection 470:	×	<u>1: UCSC Main on H</u> ne (genome)	luman: knownGe	• / ×	<u>17: ip</u>
22: Naive Variant Caller on data 21	• / ×		MarkDuplicates BA a list of datasets	<u>M output</u>						<u>16: P</u>
21: MergeSamFiles on data 20 and data 19: Merged BAM dataset	• / ×									<u>14: i</u> j <u>b</u>
20: Map with BWA on data 18 (ma pped reads in BAM format)	• / ×									<u>13: i</u> b
<u>19: Map with BWA-MEM on data 1</u> <u>8 (mapped reads in BAM format)</u>	● / ×									<u>12: i</u> b
<u>18: Combine FASTA and QUAL on</u> data 7	● # ×									<u>11: i</u> b
17: Filter on data 16	• / ×									<u>10: i</u>
16: Variant Annotator on data 15	• / ×									b
15: Naive Variant Caller on data 14	• / ×									9: ip
14: MergeSamFiles on data 13 and data 12: Merged BAM dataset	• / ×									<u>7: ip</u>
13: Map with BWA on data 11 and data 10 (mapped reads in BAM for	• / ×									<u>6: Ju</u>

Afgan et al. (2016). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. *Nat. Biotechnol.* 29:972-974.

Sharing histories

DIOMICS Analyze Data Workflow Shared Data - Visualization - Help - User -		I	Using 7%	
Share or Publish History 'W4M00001 Sacurine-statistics'		History	2 \$ [
		search datasets	(8
Make History Accessible via Link and Publish It		W4M00001_Sacurin 53 shown	e-statistics	
Anyone can view and import this history by visiting the following URL:		3.99 MB	S	•
http://galaxy.workflow4metabolomics.org/u/ethevenot/h/w4m00001sacurine-statistics-1 /		<u>53: Heatmap_figur</u> <u>e.pdf</u>	• / ×	
This history is publicly listed and searchable in Galaxy's <u>Published Histories</u> section. You can:		<u>52: Heatmap Multi</u> variate Multivariat	• / ×	
Unpublish History		variate Univariate	<u>ariate Uni</u> Generic Fil	
Removes this history from Galaxy's <u>Published Histories</u> section so that it is not publicly listed or searchable.		ter Quality Metrics	<u>Generic Fi</u> Batch cor	
Disable Access to History via Link and Unpublish		rection all loess po	ool variabl	
Disables this history's link so that it is not accessible and removes history from Galaxy's <u>Published Histories</u>	-			
section so that it is not publicly listed of searchable.		<u>si: Heatmap Multi</u> <u>variate Multivariat</u>		
Share History with Individual Users		e Multivariate Gene Quality Metrics Gen	<u>eric Filter</u> eric Filter	
You have not shared this history with any users.		ata.tsv	преметац	
Share with a user		50: Heatmap Gene ric Filter Transfor	• / ×	•
Pack to Historias List	•			>
which really asked the		0	7	'9

Workflow management
 Workflow4Metabolomics
 online platform

Main menu

- Home
- Events
- History
- Introduction
 - The Galaxy environment
 - The LC-MS workflow
 - The GC-MS workflow
 - The NMR workflow
 - References
- HowTo
- Download
 - Datasets
- Referenced WorkFlows and Histories
- How to contribute?
- Developer resources

Workflow4Metabolomics 3.0

Welcome to the collaborative portal dedicated to metabolomics data processing, analysis and annotation for Metabolomics community.

"We are happy to announce the next **Workflow4Experimenters (W4E) international course 2018**: Using Galaxy and the Workflow4metabolomics infrastructure to analyse metabolomics data. Please save the date: **8-12 October 2018** at Pasteur Institute, Paris - France

More news in April ! "

Follow us on Twitter 💟 @workflow4metabo

French Institute of Bioinformatics

- Coordinators (C. Médigue & J. van Helden)
 - French node from Elixir
 - Federation of 34 national bioinformatics platforms
 - 230 bioinformaticians
- Missions
 - **E-infrastructure** components : Storage, Computing (e.g. **cloud**), Tools, VRE...
 - **Training** (NGS, Galaxy) & community animation
 - Collaboration with national and European infrastructures
- National task force
 - **IFB Galaxy Working Group**
 - **European Galaxy Developer workshop 2017**
 - **Organization of the GCC conference 2017**

METABOHUB

- Coordinator (D. Rolin)
 - * 80 permanent scientists
 - * Total budget: 45 M€
 - * Launched in 2013
- * 4 LC-MS, GC-MS and NMR platforms
 - dedicated to Innovation, Service, Technology
 Transfer and Training
- Built upon the Francophone Network for Metabolomics and Fluxomics (> 300 members)
- * 4 online bioinformatics infrastructures
 - * workflows, databases, pathways
- * Partnerships: Sim So Profi PHENG

Europe:

bioinformatics, proteomics, cohorts, crops

MetaboHUB: The French infrastructure for metabolomics and fluxomics

Human Health

which the

W4M tools

LC/MS Record ProbMetab Ratch correction	COMMON	bank_inhouse HMDE MS search LC/MS matching MassBank Lipidmaps Find a mol file Kegg Compounds Chemspider
GC/MS THE TAMS: FUNCT Quality Metrics	Normalisation Multivariate	Golm Metabolome Database search spectrum
FIA/MS	Biosigner	
NMR_Read NMR spectra alignment NMR_Bucketing NMR_Preprocessing		NMR_Annotation
Preprocessing Normalization Statistics	Annotation	isualization

Guitton et al. (2017). Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. Int. J. Biochem. Cell. Biol. 93:89-101.

W4M00002_sacurine-comprehensive

a dula d	Workflow Canvas W4M00002w_mtbls2			Paran
Anno and a second and a second	Input dataset x xcms.xcmsSet x output Zip file xsetRData (rdata.xcms.raw) saet sampleMetadata (tabular) saet ticsRawPdf (pdf) bpcsRawPdf (pdf) log (txt)	RData file xoms.retcor x RData (rdata.xoms.group) sPdf (pdf) xset RData file xsetRData (rdata.xoms.retcor) rplotsPdf (pdf) bcsCorPdf (pdf) bpcsCorPdf (pdf)	xcms.group X xset RData file xcms.filPeaka xsetRData (rdata.xcms.group) xcet RData file rplotsPdf (pdf) xsetRData (rdata.xcms.filpeaks)	Hultivariate PCA, PLS and OPLS (Galaxy Tool Version 2.2.4) Data input 'dataMatrix_in' (tabular) variable x sample, decimal: '.', missing: NA, mode
CC-MS Preprocessing Normalisation Ouality_Control Statistical Analysis Annotation Preprocessing Normalisation Ouality_Control Statistical Analysis Annotation Common TOOLS Data Handling Text Manipulation Filter and Sort Join, Subtract and Group Statistics Graph/Display Data Descreted Tools New tools Version Hultiple rearression Workflow control Inputs	CAMERA.amotate x RData file variableMetadata (tabular) datamatrix (tabular) rdata.camera.quick, rdata.camera.nepative) output_zip (zip) Stat	Quality Metrics × Data matrix file Sample metadata file Sample metadata file SampleMetadata_out (tabular) variableMetadata_out (tabular) sampleMetadata_out (tabular) tabular) information (bit)	Univariate × Data matrix file Sample metadata file Variable metadata file Variable metadata file variableMetadata_out (tabular) information (txt) Gure (pdf) information (bxt)	 tabular Sample metadaa file Data input 'sample Metadata, (tabular) aample x metadat decimal: '', missing: NA, mot tabular Variable metad. file Data input 'variable metad. Data input 'variable met
	Canvas	Generic_Filter × Data Matrix file Sample metadata File dataMatrix_out (tabular) sampleMetadata_out (tabular) vanableMetadata_out (tabular) vanableMetadata_out (tabular)	Annotation	(for PLS(-DA) an OPLS(-DA) only) class Notes: 1) PCA: loop the default (mone); 2) PLS(-DA) and OPLS(-DA) indicate the name the column of the sample table to be modeled Number of predictive components NA. Notes: 1) PCA and PLS(-DA); NA can be selected to get

Cea Referencing our analyses

- Demonstrate the value and the reproducibility of your analysis (e.g., to reviewers)
- Receive feedback on your results, get cited, and initiate new collaborations

Referenced W4M histories

WOI	Name & DOI	Technology	Species	Matrice	Factor	Samples
W4M00001	"Sacurine-statistics" 10.15454/1.4811121736910142E12	LC-MS	H. sapiens	Urine	age, BMI, gender	184
W4M00002	"Sacurine-comprehensive" 10.15454/1.481114233733302E12	LC-MS	H. sapiens	Urine		9
W4M00003	"Diaplasma" 10.15454/1.4811165052113186E12	LC-MS	H. sapiens	Plasma	Constant of the second	
W4M00004	"GCMS Algae" 10.15454/1.4811272313071519E12	GC-MS	E. siliculosus	Algae	A STREET	100
W4M00005	"Ractopamine" 10.15454/1.4811287270056958E12	LC-MS	S. scrofa	Serum	R	"
W4M00006	"BPA-MMusculus" 10.15454/1.4821558812795176E12	NMR	M. musculus	Brain		2
W4M00007	"Coffea leaves" 10.15454/1.4985472277740251E12	LCMS	Coffea sp.	Leaves	A A A A A A A A A A A A A A A A A A A	6.01

Guitton et al. (2017). Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. Int. J. Biochem. Cell. Biol. 93:89-101.

Omics data analysis for high-throughput phenotyping | E. Thévenot | 86

- Private account
- Computation and storage resources
- Help desk

- Sharing and referencing of histories and workflows (DOI)
- Annual courses (tutoring on your own data)
 Save the date: 8-12 October 2018, Pasteur Institute (Paris)
- Installation of local instances

contact@workflow4metabolomics.org

The Team

A team work from talented people

➤ The CEA team

Natacha Lenuzza, Alexis Delabrière, Pierrick Roger-Mele, Bertrand Monfort, Philippe Rinaudo, et al.

The MetaboHUB infrastructure

Fabien Jourdan, Franck Giacomoni, Marie Tremblay-Franco, Jean-François Martin, Mélanie Pétéra, Nils Paulhe, Christophe Junot, Estelle Pujos-Guillot, Dominique Rolin, *et al.*

➤ The IFB infrastucture

Christophe Caron, Gildas Le Corguillé, David Vallenet, Claudine Médigue, Jacques van Helden, et al.

The PhenoMeNal consortium

Christoph Steinbeck, Steffen Neumann, Namrata Kale, Pablo Moreno, Kenneth Haug, Reza Salek, Philippe Rocca-Serra, Luca Pirredu, et al.

Thanks for coming

Questions?