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Atmospheric flow Analogues for Climate Change

New Dynamical Systems Tools
to study atmospheric flows

Davide Faranda
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OBJECTIVES

Characterize the predictability of Atmospheric Fields
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METHOD
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Compute Dynamical Systems metrics to characterize atmospheric states,
verifying that a long series of observations sample the underlying Attractor.

Local Dimensions d

It is proportional to the number of
possible configurations (number of
degrees of freedom) originating and
resulting from the atmospheric field
analyzed.

Its inverse tells for how long the
atmospheric field will look like the
one under examination. For the
present analysis © is an inverse
number of persistance days.
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RESULTS - PERSISTENCE/DIMENSION DIAGRAM
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NAO+ ATLANTIC RIDGE

Seasonal Cycle

Resolution

Historical Storms

Predictability

CMIP5 models assessment

Winter 2013/2014

The scatter plot displays the daily values of the instantaneous dimension
d - the higher d, the more unpredictable is the atmospheric circulation - Real Time Analysis
and the persistence 0 - the lower 6 the more stable is the atmospheric
circulation - of the sea level pressure field (in hPa) extracted from the
NCEP Database. The colorscale represents the North Atlantic Oscillation
(NAO) index.
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CONCLUSIONS

From an innovative application of recent results in
dynamical system theory, we obtain that:

- The distribution of the local dimensions capture the
features of mid-latitude circulation dynamics.

- Extremes of local dimensions correspond to real-life
extreme weather (storms and blocking).

- One could use the dynamical indicators to prepare better
ensemble forecasts by adjusting the number of
members and/or the accuracy of the forecast
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WikipeprA | European windstorm Storms matching the minima of
o the instantaneous dimensions.

From Wikipedia, the free encyclopedia
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SEASONAL CYCLE
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The instantaneous dimensions d (y-axis) versus the years of the
database shows an interesting seasonal cycle. Extremes are found in
wintertime, where sharp transitions occur between maxima and minima.
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RESOLUTION
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The instantaneous dimensions d (y-axis) boxplot versus the change in
spatial resolution/dataset shows the stability of the method.
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IMPLICATIONS ON WEATHER FORECASTS

400 600 s 800 1000

Error Iin the forecast at 384 h
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Analysis of the relation between
instantaneous  properties and
NOAA GER reforecast. Bivariate
histograms of the ensemble spread
<0g p> at a lead time of +384h as a
function of the stability © of the
initialisation field, for the period
2000-2015.

The colourscale indicates the
number of days with the same pair of
parameters.

There is a linear correlation between
error in the forecat and persistence
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CMIP5 MODELS ASSESSMENT
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CMIP5 MODELS ASSESSMENT — CHANGES FROM 1979
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30 Years moving average of local dimension showing a decreas in D
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WINTER 2013/2014 ANIMATION

Dynamical proxies of North Atlantic
predictability and extremes

D Faranda, G Messori, P Yiou

Supplementary Video
Winter 2013-2014

The video displays the daily values of the instantaneous dimension d -
the higher d, the more unpredictable is the atmospheric
circulation - and the persistence 0 - the lower 8 the more stable is
the atmospheric circulation - of the sea level pressure field (in hPa)
extracted from the NCEP Database for the winter 2013/2014.
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REAL TIME ANALYSIS FOR THE NORTH ATLANTIC

o0&

DINAMICAL SYSTEMS ANALYSIS AND FORECAST FOR: 04-May-2018

a) Dimension/Persistence diagram
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http://www.lsce.ipsl.fr/Pisp/davide.faranda/#dynAnalysis

The scatter plot displays the daily values of the instantaneous dimension d - the higher d,
the more unpredictable is the atmospheric circulation - and the persistence 6 - the
lower @ the more stable is the atmospheric circulation - of the sea level pressure field
(in hPa) extracted from the NCEP Database. The trajectory for the last 7 days is displayed
in colors.
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DYNAMICAL SYSTEMS THEORY
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Use of differential equations
to predict the motion (trajectory) of a material point

Foucalt Pendulum Rosetta Trajectory Weather Forecast

Lagrange - Mécanique analytique (1788),

Predicting atmospheric states from local dynamical properties of the underlying attractor davide faranda - Machine Learning -2018




ATTRACTOR
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Definition: Ensemble of numerical values toward which a system
tends to evolve, for a wide variety of starting conditions of the system.

Example: Lorenz 63 attractor ( Rayleigh Bénard convection)

Attractors Change witho,r =
@:D_(v_x) R — S —
dt ) 30
dy
— =FrX—-V—XZ y 207
dt :
d‘z 10
—=xy-bz
dt ]

X: convection strength , y: difference of temperature, z: asymmetry

: 110
o, r Prandtl and Reyleigh Number, b: ratio of critical parameters 0

Lagrange - Mécanique analytique (1788),
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LOCAL DIMENSIONS : GEOMETRY €= DYNAMICS Can
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HOW TO COMPUTE LOCAL DIMENSIONS (1/3)

1) In a chaotic dynamical system,

take a trajectory of the system: /™ (x3

2) Rare events are recurrences of a =

state C: |

X (x) = g(dist(f" (x), §))

3) Then, chose observables such that
the maxima of g correspond to
minima of the distances with
respect to C:

91" ( Q)=-log(dist(f "(x), <)

0~

30

8 —
50 ¢
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HOW TO COMPUTE LOCAL DIMENSIONS (2/3)

For any chaotic systems entering in a
ball close to g, is equivalent to study
threeshold exceedances of:

P(9(x(t)) > a, {)

For the Freitas-Freitas-Todd theorem
(2008) P converges asymptotically to
the exponential member of the
Generalized Pareto distribution (GEV)
distribution:

P(y, )= exp(-[y-a({)]/a(0))

And the local dimension is d({)=1/0(()
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HOW TO COMPUTE LOCAL DIMENSIONS (3/3)

Pure and Applied Mathematics:

A Wiley Series of Texts, Monographs, and Tracts “Extremes and recurrence in
Dynamical systems” contains
new tools for estimating the local
dimensions d({)

Book: Lucarini, Faranda et al. Wiley (2016)

Extremes and
Recurrence in
Dynamical Systems

s ® Mark Holland e
Mike Todd e Sandr

WILEY
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LOCAL DIMENSIONS IN LORENZ ATTRACTORS
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PERSISTENCE <~ STABILITY OF THE TRAJECTORY

If a threshold u is applied to a series of observations Xy, X,,...,X,
the exceedances are those for which x>u. The extremal index 6
can then be thought of as the average inverse time spent
above u.

Local Stability in Lorenz Attractor
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LOCAL STABILITY IN LORENZ ATTRACTOR
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0 is a good proxy for unstable fixed points of the system
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CORRELATION DIMENSIONS AND ENTROPY

Let us now consider the probability that two trajectories x(t),y(t) of
the same dynamical system get extremely close. By writing the
observable

wx(1),y(t)) =-log(dist(x(t),y(t))

P(w(x(t),y(t)) > q)

The results by Faranda and Vaienti (Chaos, 2018) show that
again P converges asymptotically to the exponential member of
the Generalized Pareto distribution (GEV) distribution:

P(y, ()= exp(-[y-al/o)

And the Correlation dimension is D,=1/o 0
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CORRELATION DIMENSIONS AND ENTROPY

The extremal index is instead related to the positive Lyapunov
exponent .Aﬁ In dimension 2

. 1 — | log|T"(x)|du(x) —A
()ml—[ d;t.rgl—ej B =1 —e M
I [T ()] )

And to the entropy h in dimension n:

[ L(x)|det(DT (x)], \—ZM = hg,

0~1—¢ "t
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CORRELATION DIMENSIONS AND ENTROPY
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TABLE I. Estimates of correlation dimension D, and dynamical extremal index (DEI) 0 obtained with /=100 trajectories, consisting of n= 10 iterations or n= 10*
iterations. The maxima of (x, y) are extracted in the block of s= 10" and s = 107 length, for a total of m= 10" or m = 107 blocks. The quantile for the estimate of
the DEI is § = 0.99. For the Arnold Cat’s map, the convergence to theoretical value is lower and the estimates are provided only for § = 0.99999 and n = 10",

Map D, (classical) D, (n= ]ﬂ“} D, (n=1 OJ'J 0 (from Lyapunov) 0(n= ]ﬂf') Uin= ]04J
Bernoulli’s shifts 1 1.00 = 0.02 101 =0.14 0.667 0.668 + 0.004 0.69 = 0.04
Gauss map 1 1.00 = 0.03 096 +0.16 0.773 0.773 = 0.005 0.78 = 0.04
Cantor [FS 0.667 0.64 = 0.01 0.59 = 0.13 0.5 0.502 = 0.005 0.50 = 0.05
Baker map 1.41 1.46 = 0.02 142 +0.25 0.47 049 = 0.02 0.50 = 0.04
Lozi map 1.38 1.39 = 0.11 1.29 +0.25 0.37 0.37 = 0.01 0.37 £0.05
Henon map 1.22 1.24 = 0.03 1.13 +0.25 0.34 043 = 0.01 043 + 0.06
Solenoid a = 1/3 1.6309 1.64 = 0.04 1.55 £ 0.17 0.5 0.51 = 0.01 0.59 = 0.03
Solenoid a = 1/4 1.5 1.52 = 0.03 1.57 =0.20 0.5 051 = 0.01 0.53 = 0.03
Amold Cat’s map 1.987 2.00 = 0.06 0.51 0.53 £ 0.06
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CORRELATION DIMENSIONS AND ENTROPY
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FIG. 1. Estimates of the dynamical extremal index ¢ and correlation dimen-
sion ), (inset) obtained for the Generalized Henon maps [Eq. (3.1)] in dif-
ferent dimensions d. The values represent the estimates obtained taking 30
couples of trajectories, iterated for n=10° iterations. Each couple is dis-
played using a single marker, but the uncertainty is so small that the differ-
ence between couples is hardly recognizable. The quantile used for the
estimation is § = 0.98. The results are compared to those obtained using the
Kaplan-Yorke dimension Dgy and the entropy h. This map has d — 1 posi-
tive Lyapunov exponents.
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CORRELATION DIMENSIONS AND ENTROPY

a) 13 : - : :

12}
1 -*-
1

a * : ¥ F »
8r ¥ ¥ e
7L
6t
2 s 4 5 & 7

Member

Predicting atmospheric states from local dynamical properties of the underlying attractor

€ 1900-201(
3 1900-195!
¥ 1900-192¢
% 1900-191«

¥
*x ¥
* %

13
e
o
=
=
o
=

dépasser les

- 06 % 1900-2010
¥ ¥ 1900-1955
i 3 1900-1928
- % 1900-1914
* ¥ ¥ 5 |
0.5 * * ¥ 3 *
¥ *
= +
0.45 e
04F k3
35 L ' L L 1
2 3 4 5 6 7 8 9 10

Member

FIG. 2. Estimates of correlation dimension D, (a) and extremal index 0 (b)
obtained for daily sea-level pressure maps for four different periods in the
ERA-20CM reanalysis. The values represent the estimates obtained taking
as reference trajectory x the member M1 and as y, the remaining 9 ensemble
members.
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