Machine Learning Techniques at the LHC Experiments

Özgür Şahin

DE LA RECHERCHE À L'INDUSTRIE

16.01.2018

What to expect?

- Introduction to Machine learning
- Clustering with DBSCAN
 - Performance under pileup
- Support Vector Machines (SVM)
 - Hyperparameter Optimization
 - Case Studies
 - Implementation in the 8 TeV top squark search
- Conclusion

- Searching for new physics in HEP
 - Classification of Signal (New Physics) to the background (Standard Model).
 - For most of the new physics models idiom *looking for a needle in a haystack* does not actually suffice...

- A better version would be looking for a slightly different needle within a stack of needles.
- We need to analyze all the inputs in a very affective way.
 - Machine learning!
- Within HEP, the benefits are quite visible, the interest is high, but the support is limited.

- Machine learning: an autonomous process where the Performance for a given Task is improved by increasing Experience. (T. M. Mitchell)
 - T Classification of new physics events among standard model events, identification of particle of interest among vast noise...
 - E Number of events: asymmetrical samples (ie most of the time input includes only 0.01% signal.)
 - P ''Discovery!'' (or to be less dramatic sensitivity), correct identification, being resilient against pile-up...
- Rosetta for HEP ML Statistics (not true for all but safe to generalize)
 - Label, Class: Signal & Background (we would like to be more explicit... BTW background is noise for what it is worth and we use noise mainly for instrumental fluctuations)
 - Performance: Sensitivity, significance
 - Performance criteria: Figure of Merit
 - Feature: Variable (I know... It is harder to pronounce for non-native that is why it is preferred).

Özgür Sahin

Özgür Sahin

- DBSCAN is a an award winning (timing) density-based clustering algorithm. In this talk, this algorithm is compared to a simple cone algorithm.
- It has two hyperparameters: Minimum distance (radius) and minimum number of points.

- DBSCAN is a an award winning (timing) density-based clustering algorithm.
- It has two hyperparameters: Minimum distance (radius) and minimum number of points.

- DBSCAN is a an award winning (timing) density-based clustering algorithm.
- It has two hyperparameters: Minimum distance (radius) and minimum number of points.

- DBSCAN is extremely efficient for
 - eliminating noise,
 - detecting non-uniform clusters.
- https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Clustering algorithms

- To reconstruct the objects, we cluster the hits in our detectors using various algorithms. The readout is synchronous with LHC (ie ~40 MHz).
- These algorithms are meant to be implemented in low level electronics.
- In order to simplify the problem, a dimension reduction is performed by projecting the ''layers'' into a single plane in Z.

Software implementation

- The clusters are ranked wrt to distance to center.
- A secondary search is performed to find the neighbors.

Software implementation

- The clusters are ranked wrt to distance to center.
- A secondary search is performed to find the neighbors.

Software implementation

- The sorted DBSCAN algorithm is approximately 20 times faster than the unsorted search.
 - The sorted DBSCAN is as fast as the Cone clustering algorithm.

Cluster shape comparison

- With no PU, both algorithms produce clusters with similar widths (overlapping distributions).
- Even though it is still significantly affected by the high PU, the DBSCAN algorithm produces narrower clusters.

Cluster shape comparison

Cone algorithm yields to a wider shower length distribution in high PU

SVM

- As a rather modern machine learning algorithm, SVM is not widely used in the HEP data analysis, with few exceptions. In this talk I want to focus on this particular implementation.
- We used a discovery significance based hyperparameter tuning algorithm.
- We introduced an SVM classifier interface (SVM-HINT), which is based on a widely used SVM library (LIBSVM), tailored for HEP searches.
 - Performance and optimization of support vector machines in high-energy physics classification problems
 - https://github.com/ml-hint/svm-hint

Support Vector Machines

• What is the optimal way to separate two linearly separable distributions?

Support Vector Machines

• SVM provides a unique solution to separate two class problems i.e. signal from background.

$$\mathscr{L}(\vec{w}, \vec{x}, \alpha) = \frac{1}{2} |\vec{w}|^2 - \sum \alpha_i [y_i(\vec{w} \cdot \vec{x} + b) - 1]$$

Karush Kuhn Tucker Conditions

• If the problem has a solution and it satisfies the following conditions: $\vec{\alpha} \ge 0$,

 $\alpha_i [y_i(\vec{w} \cdot \vec{x}_i + b) - 1] = 0, \qquad i = 1, ..., N.$

- These conditions are known as the KKT conditions.
- The KKT conditions provide a generalization of the method of Lagrange multiplier for the case of inequalities .

Support Vector Machines

- Method of Lagrange multipliers can be generalized respecting KKT conditions.
- Slack variables:

$$\mathscr{L} = \frac{1}{2} |\vec{w}|^2 + \mathcal{O}\sum_i \xi_i - \sum \alpha_i [y_i(\vec{w} \cdot \vec{x} + b) - 1 + \xi_i] - \sum \beta_i \xi_i$$

SVM: Non-linear case

 Is it possible to classify these samples with a linear decision function?

SVM: Non-linear case

- With a mapping in the form of x→y²
- Calculating a non-linear mapping may become cumbersome for large number of dimensions.

SVM: Non-linear case

- The decision function of SVM must be linear.
- Two non-linearly separable distributions can be linearly separable in a nonlinearly transformed space.
- Calculating a non-linear mapping may become cumbersome for large number of dimensions (in some cases infinite).
- Way out: SVM uses a 'kernel trick' to circumvent this problem. By imposing the stability conditions, the Lagrangian can be reduced to the functional:

$$\mathscr{W}(\vec{\alpha}) = -\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\vec{x}_{i} \cdot \vec{x}_{j}) + \sum \alpha_{i}$$

• Various kernels are available (Mercer's theorem). In this study, RBF (Radial Basis Function) kernel is used:

$$K(\vec{x}_i, \vec{x}_j) = e \mathcal{P}^{\vec{x}_i - \vec{x}_j|^2}$$

- libSVM (Chang et. al.) is a well tested and widely used SVM library.
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- libSVM is using an improved version of Sequential Minimal Optimization.
- The library is optimized and tested over many years.

- SVM with RBF kernel has two hyperparameters which need to be set before the application:
 - the slack variable parameter **C**,
 - the inverse kernel width γ .
- A discovery significance based algorithm outperforms other performance measures for the physics searches.
- We implemented a custom grid search algorithm for the Hyper-parameter optimization based on the Asimov significance estimator.

Two classes: Blue is background and red is signal

- A custom iterative grid search algorithm is employed to optimize the hyper-parameters:
 - In order to prevent over-training in the least computationally cumbersome way:

$$\tilde{Z} = Z_A^{\text{(test)}} \left[1 - \frac{|Z_A^{\text{(test)}} - Z_A^{\text{(train)}}|}{Z_A^{\text{(test)}} + Z_A^{\text{(train)}}} \right]$$

• Starting from an initial set, \mathbb{C} and γ parameters are scanned with a focusing parameter (see the next slide)

Two classes: Blue is background and red is signal

32

Case Study I

- A simple toy example is used to compare the time performance of the implementations.
- The variables are sampled from:

$$V_{1} = \sin(x_{1}); \qquad x_{1} \sim g(x_{1}|a,b)$$

$$V_{2} = x_{2}; \qquad x_{2} \sim \exp(-x_{2}/c)$$

$$V_{3} = x_{3}; \qquad x_{3} \sim g(x_{3}|d,e)$$

$$V_{4} = \sqrt{x_{4}}; \qquad x_{4} \sim \exp(-x_{4}/f)$$

• TMVA-BDT is used as a benchmark implementation.

Case Study I: Runtime performance

- The algorithms are optimized to have similar accuracies.
- SVM-Hint with 12 threads has the **fastest timing performance**.
- SVM-Hint scales with number of training events.
- BDT almost competitive in speed with lower number of training events.

Case Study II

- Search for supersymmetry in single lepton final states (14 TeV).
- A benchmark SUSY model an SMS simplified model. The particular mass parameters: Top quark super partner mass of 900 and LSP mass 100 GeV.
- Only the dominant SM background $t\overline{t} \rightarrow l(l + \text{jets})$ is and only this background is considered for the sake of simplicity.
- Simulations performed with Delphes fast simulation program including pileup (same as used for Snowmass study)

Case Study II

- 25 variables are considered to discriminate signal and background.
- The variables are grouped into four different sets with respect to their complexity.
- Low-level variables include basic features of physics objects whereas high-level variables are constructed from these objects.
- TMVA-BDT is used as a benchmark implementation.

	Variable	Set 1	Set 2	Set 3	Set 4
low-level	$p_{\mathrm{T},l}$	•	•		
	η_l	•	•		
	$p_{T,jet(1,2,3,4)}$	•	•		
	$\eta_{jet(1,2,3,4)}$	•	•		
	$p_{\mathrm{T},bjet1}$	•	•		
	η_{bjet1}	•	•		
	n_{jet}	•	•		
	n_{bjet}	•	•		
	E_{T}	•	•		•
	H_{T}	•	•		•
	$m_{ m T}$	•		•	•
	m_{T2}^W	•		•	•
	$\Delta \phi(W,l)$	•		•	
high-level	m(l,b)	•		•	
	Centrality	•		•	
	Y	•		•	
	$H_{\rm T}$ -ratio	•		•	
	$\Delta \mathrm{r}_{\mathrm{min}}(l,b)$	•		•	
	$\Delta \phi_{\min}(j_{1,2},E_{\mathrm{T}})$	•		•	

SVM-HINT

	SVM-HINT			TMVA-BDT			
Set	N_s	N_b		N_s	N_b		Z_A^{prov}
1	32.1 ± 0.6	1.0 ± 1.0	11.4	24.1 ± 0.5	1.9 ± 1.4	8.0	5.1
2	23.2 ± 0.5	23.9 ± 4.8	2.5	16.2 ± 0.4	10.5 ± 3.2	3.0	1.5
3	37.8 ± 0.6	9.6 ± 3.0	6.1	40.5 ± 0.7	9.6 ± 3.0	6.4	3.7
4	33.4 ± 0.6	20.1 ± 4.4	3.7	40.5 ± 0.7	35.4 ± 5.8	3.0	1.8

- https://github.com/ml-hint/svm-hint
- **SVM-HINT** provides typically **strong classification out of the box**.

Sahin et al DOI:10.1016/j.nima.2016.09.017

Case Study II: Classifier Responses

Comparison of the results

Improvement in the compressed region and in the high top-squark mass.

Conclusion

- A range of machine learning algorithms is widely employed in collider physics.
 - IMHO, we are still not at the front-line...
 - The possibilities are vast, but the support is limited. I hope collaborations with other disciplines also help people to realize the importance.
- As an unsupervised learning algorithm DBSCAN clustering algorithm is presented. DBSCAN is proven to be fast, flexible and resilient against possible noise.
 - DBSCAN seems to perform better under high-PU.
- An SVM interface for the HEP data classification problems using a statistical significance (Asimov Significance estimator) based hyperparameter optimization is presented. Available on Github:
 - <u>https://github.com/ml-hint/svm-hint</u>
 - The implementation provides a strong classification out of the box with a built-in autonomous optimization.

thank you!

References

References

- TMVA Package (a complete and easy to use HEP ML software) built in to the ROOT framework (a C++ based CERN - Fermilab developed analysis framework for Big Data analysis):
 - TMVA: https://github.com/root-project/root/tree/master/tmva
 - ROOT:<u>https://github.com/root-project/root/</u>
- Some books for interested (the first book is more of the fundamentals the second book is related to Deep Learning which is not covered in this talk):
 - <u>https://www.amazon.com/Pattern-Recognition-Learning-Information-</u> <u>Statistics/dp/0387310738</u>
 - <u>https://www.amazon.com/Deep-Learning-Adaptive-Computation-</u> <u>Machine/dp/0262035618/</u>
- Cowan et al (Asimov Paper) Eur. Phys. J.C71:1554, 2011
- Sahin et al (SVM-HINT paper) DOI:10.1016/j.nima.2016.09.017

Backup

CMS event display

Asimov Significance

$$Z_A = \left[2\left((s+b) \ln\left[\frac{(s+b)(b+\sigma_b^1)}{b^2+(s+b)\sigma_b^2}\right] - \frac{b^2}{\sigma_b^2} \ln\left[1 + \frac{\sigma_b^2 s}{b(b+\sigma_b^2)}\right] \right) \right]^{1/2}$$

- <u>http://www.pp.rhul.ac.uk/~cowan/atlas/cowan_atlas_15feb11</u>,
 - * Eur. Phys. J .C71:1554, 2011.
- Gives a very close estimation of the quoted significances.

$\hat{\mu}_b$	1.3	3.8	3.8	388.6	493434	2109732
$s = n - \hat{\mu}_b$	4.7	5.2	13.2	134	4992	9717
$f = \sigma_b / \hat{\mu}_b$	0.231	0.237	0.158	0.0207	0.00142	0.000206
Quoted Z	2.7	1.9	4.6	5.9	5.0	6.4
Z_A	2.8	2.0	4.6	5.9	5.0	6.4

