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What to expect?

2

• Introduction to Machine learning 

• Clustering with DBSCAN

• Performance under pileup

• Support Vector Machines (SVM)

• Hyperparameter Optimization 

• Case Studies

• Implementation in the 8 TeV top squark search

• Conclusion 
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• Searching for new physics in HEP

• Classification of Signal (New Physics) to the background (Standard Model).

• For most of the new physics models idiom looking for a needle in a haystack 
does not actually suffice…

Machine learning

3
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• A better version would be looking for a slightly different needle within a stack of needles.

• We need to analyze all the inputs in a very affective way.

• Machine learning!

• Within HEP, the benefits are quite visible, the interest is high, but the support is limited. 

Machine learning
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Machine learning

5

• Machine learning: an autonomous process where the Performance for a given Task is 
improved by increasing Experience. ( T. M. Mitchell)

• T — Classification of new physics events among standard model events, identification 
of particle of interest among vast noise…

• E — Number of events: asymmetrical samples (ie most of the time input includes only 
0.01% signal.)

• P — “Discovery!” (or to be less dramatic sensitivity), correct identification, being 
resilient against pile-up…

• Rosetta for HEP - ML - Statistics (not true for all but safe to generalize)

• Label, Class: Signal & Background (we would like to be more explicit… BTW background 
is noise for what it is worth and we use noise mainly for instrumental fluctuations)

• Performance: Sensitivity, significance

• Performance criteria: Figure of Merit

• Feature: Variable (I know… It is harder to pronounce for non-native that is why it is 
preferred). 
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Machine learning
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Machine learning
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Machine learning
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DBSCAN
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• DBSCAN is a an award winning (timing) density-based clustering algorithm. 
In this talk, this algorithm is compared to a simple cone algorithm. 

• It has two hyperparameters: Minimum distance (radius) and minimum 
number of points. 
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DBSCAN
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• DBSCAN is a an award winning (timing) density-based clustering 
algorithm. 

• It has two hyperparameters: Minimum distance (radius) and minimum 
number of points. 
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DBSCAN
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• DBSCAN is extremely efficient for 

• eliminating noise,

• detecting non-uniform clusters.  

• https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
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Clustering algorithms
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• To reconstruct the objects, we cluster the hits in our detectors using various algorithms. The 
readout is synchronous with LHC (ie ~40 MHz). 

• These algorithms are meant to be implemented in low level electronics. 

• In order to simplify the problem, a dimension reduction is performed by projecting the 
“layers” into a single plane in Z.
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• The clusters are ranked wrt to distance to center. 

• A secondary search is performed to find the neighbors. 

Software implementation
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z-projected
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• The sorted DBSCAN algorithm is approximately 20 times faster than the 
unsorted search. 

• The sorted DBSCAN is as fast as the Cone clustering algorithm.

Software implementation

17

z-projected
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• With no PU, both algorithms produce clusters with similar widths 
(overlapping distributions).

• Even though it is still significantly affected by the high PU, the DBSCAN 
algorithm produces narrower clusters. 

Cluster shape comparison
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Cluster shape comparison
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SVM
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• As a rather modern machine learning algorithm, SVM is not widely used in the 
HEP data analysis, with few exceptions. In this talk I want to focus on this 
particular implementation. 

• We used a discovery significance based hyperparameter tuning algorithm. 

• We introduced an SVM classifier interface (SVM-HINT), which is based on a 
widely used SVM library (LIBSVM), tailored for HEP searches.

• Performance and optimization of support vector machines in high-energy 
physics classification problems

• https://github.com/ml-hint/svm-hint

https://github.com/ml-hint/svm-hint
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• What is the optimal way to separate two linearly separable 
distributions?

Support Vector Machines
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SVM
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• SVM provides a unique solution to separate two class problems i.e. signal 
from background. 
 
 

Support Vector Machines

22

SVM

34

~w

~w · ~x+ b = 1~w · ~x+ b = �1

L (~w, ~x,↵) = 1
2 |~w|

2 �
P

↵i[yi(~w · ~x+ b)� 1]
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Karush Kuhn Tucker Conditions
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• If the problem has a solution and it satisfies the following 
conditions: 
 

• These conditions are known as the KKT conditions. 

• The KKT conditions provide a generalization of the method of 
Lagrange multiplier for the case of inequalities .  

~↵ > 0,

↵i[yi(~w · ~xi + b)� 1] = 0, i = 1, ..., N.
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• Method of Lagrange multipliers — can be generalized respecting KKT conditions.

• Slack variables: 
 

Support Vector Machines
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SVM

33
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• With a mapping in the form of          
x→y2

• Calculating a non-linear mapping 
may become cumbersome for large 
number of dimensions.
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SVM: Non-linear case
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• The decision function of SVM must be linear. 

• Two non-linearly separable distributions can be linearly separable in a non-
linearly transformed space.

• Calculating a non-linear mapping may become cumbersome for large number of 
dimensions (in some cases infinite).

• Way out: SVM uses a ‘kernel trick’ to circumvent this problem. By imposing the 
stability conditions, the Lagrangian can be reduced to the functional:

• Various kernels are available (Mercer’s theorem). In this study, RBF (Radial Basis 
Function) kernel is used: 
 
  K(~xi, ~xj) = e��|~xi�~xj |2

W (~↵) = � 1
2

P
i

P
j
↵i↵jyiyj(~xi · ~xj) +

P
↵i
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libSVM
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• libSVM (Chang et. al.) is a well tested and widely used SVM library. 

• http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• libSVM is using an improved version of Sequential Minimal Optimization.  

• The library is optimized and tested over many years.
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• SVM with RBF kernel has two hyper-
parameters which need to be set before 
the application:

• the slack variable parameter C,

• the inverse kernel width 𝜸.  

• A discovery significance based algorithm 
outperforms other performance measures 
for the physics searches. 

• We implemented a custom grid search al-
gorithm for the Hyper-parameter optimi-
zation based on the Asimov significance 
estimator.  

Hyperparameter optimization

29
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Z̃ = Z(test)
A
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• A custom iterative grid search algorithm  
is employed to optimize the hyper- 
parameters:

• In order to prevent over-training in the 
least computationally cumbersome 
way:

• Starting from an initial set, C and 𝜸 
parameters are scanned with a 
focusing parameter (see the next 
slide) 
 

Hyperparameter optimization
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Hyperparameter optimization
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Hyperparameter optimization
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Case Study I
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• A simple toy example is used to compare the time performance 
of the implementations. 

• The variables are sampled from:

• TMVA-BDT is used as a benchmark implementation. 

V1 = sin(x1); x1 ⇠ g(x1|a, b)
V2 = x2; x2 ⇠ exp(�x2/c)
V3 = x3; x3 ⇠ g(x3|d, e)
V4 =

p
x4; x4 ⇠ exp(�x4/f)
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• The algorithms are optimized to have similar accuracies. 

• SVM-Hint with 12 threads has the fastest timing performance.

• SVM-Hint scales with number of training events.

• BDT almost competitive in speed with lower number of training events.

Case Study I: Runtime performance

34

t (
se

c)

1

10

100

1000

training events

0 10000 20000 30000 40000 50000 60000

TMVA BDT (1 thread)
TMVA SVM (1 thread)
SVM-HINT with prob. (1 thread)
SVM-HINT w/o  prob. (1 thread)
SVM-HINT w/o  prob. (12 threads)



Özgür Sahin

• Search for supersymmetry in single 
lepton final states (14 TeV). 

• A benchmark SUSY model - an SMS 
simplified model. The particular mass 
parameters: Top quark super partner 
mass of 900 and LSP mass 100 GeV. 

• Only the dominant SM background 
                  is and only this back-
ground is considered for the sake of 
simplicity. 

• Simulations performed with Delphes 
fast simulation program including 
pileup (same as used for Snowmass 
study)

Case Study II
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• 25 variables are considered to dis-
criminate signal and background. 

• The variables are grouped into four 
different sets with respect to their 
complexity. 

• Low-level variables include basic 
features of physics objects whereas 
high-level variables are constructed 
from these objects. 

• TMVA-BDT is used as a benchmark 
implementation. 

Case Study II
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subset of two low-level and two high-level variables with relatively large separation power.

Table 1. Summary of all low-level and high-level variables used in the analysis. Set 1 includes all
variables. Set 2 and set 3 consist of low- and high-level variables, respectively. Set 4 is a smaller
subset of high- and low-level variables.

Variable Set 1 Set 2 Set 3 Set 4

lo
w

-le
ve

l

pT,l • •
⌘l • •
pT,jet(1,2,3,4) • •
⌘jet(1,2,3,4) • •
pT,b jet1 • •
⌘b jet1 • •
njet • •
nb jet • •
ET/ • • •
HT • • •

hi
gh

-le
ve

l

mT • • •
m

W
T2 • • •

��(W , l) • •
m(l , b) • •
Centrality • •
Y • •
HT-ratio • •
�rmin(l , b) • •
��min(j1,2, ET/ ) • •

Analysis strategy In order to reduce the time required for training and optimization, a
baseline selection, summarized in Table 2, is applied to the signal and background samples.
Figure 3 shows the distribution of signal and background for two low-level and two high-level
variables, HT, ET/ , mT and m

W
T2 after the baseline selection, normalized to the expected

luminosity at the end of the LHC run in the year 2023, corresponding to 300 fb�1. The
background is several orders of magnitude higher than the signal, and the distributions of
signal and background are quite similar due to their similar kinematics.

The samples are separated into three independent subsamples: training, test and eval-
uation sample. Each classification method is optimized over the training and test samples
and the best-performing configuration is applied to the independent evaluation sample for
the final performance assessment.

The TMVA-BDT has been manually trained and tested over 8 different settings for each
of the four variable sets in order to obtain optimal parameters as described in Appendix B,
while the SVM-HINT is auto-tuned by the iterative grid search, as described in Sec. 3
and Appendix A. Without modifying the default SVM-HINT settings, the two step grid

– 11 –
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SVM-HINT
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• https://github.com/ml-hint/svm-hint

• SVM-HINT provides typically strong classification out of the box. 

SVM-HINT TMVA-BDT

Set Ns Nb Zmax
A Ns Nb Zmax

A Zprov
A

1 32.1± 0.6 1.0± 1.0 11.4 24.1± 0.5 1.9± 1.4 8.0 5.1
2 23.2± 0.5 23.9± 4.8 2.5 16.2± 0.4 10.5± 3.2 3.0 1.5
3 37.8± 0.6 9.6± 3.0 6.1 40.5± 0.7 9.6± 3.0 6.4 3.7
4 33.4± 0.6 20.1± 4.4 3.7 40.5± 0.7 35.4± 5.8 3.0 1.8

Sahin et al DOI:10.1016/j.nima.2016.09.017
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Both SVM-HINT and TMVA-BDT benefit from high number of variables.
SVM Probability
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Case Study II: Classifier Responses
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• Improvement in the compressed region and in the high top-squark mass. 

Comparison of the results
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Conclusion
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• A range of machine learning algorithms is widely employed in collider physics. 

• IMHO, we are still not at the front-line…

• The possibilities are vast, but the support is limited. I hope collaborations with 
other disciplines also help people to realize the importance. 

• As an unsupervised learning algorithm DBSCAN clustering algorithm is 
presented. DBSCAN is proven to be fast, flexible and resilient against possible 
noise. 

• DBSCAN seems to perform better under high-PU.

• An SVM interface for the HEP data classification problems using a statistical 
significance (Asimov Significance estimator) based hyperparameter optimization 
is presented. Available on Github:

• https://github.com/ml-hint/svm-hint 

• The implementation provides a strong classification out of the box with a 
built-in autonomous optimization.

https://github.com/ml-hint/svm-hint


thank you!
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• TMVA Package (a complete and easy to use HEP - ML software) built in to 
the ROOT framework (a C++ based CERN - Fermilab developed analysis 
framework for Big Data analysis): 

• TMVA: https://github.com/root-project/root/tree/master/tmva

• ROOT:https://github.com/root-project/root/

• Some books for interested (the first book is more of the fundamentals the 
second book is related to Deep Learning which is not covered in this talk):

• https://www.amazon.com/Pattern-Recognition-Learning-Information-
Statistics/dp/0387310738

• https://www.amazon.com/Deep-Learning-Adaptive-Computation-
Machine/dp/0262035618/

• Cowan et al (Asimov Paper) Eur. Phys. J .C71:1554, 2011

• Sahin et al (SVM-HINT paper) DOI:10.1016/j.nima.2016.09.017

https://github.com/root-project/root/
https://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738
https://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738
https://www.amazon.com/Deep-Learning-Adaptive-Computation-Machine/dp/0262035618/
https://www.amazon.com/Deep-Learning-Adaptive-Computation-Machine/dp/0262035618/


Backup



Özgür Sahin

CMS event display
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Asimov Significance
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• http://www.pp.rhul.ac.uk/~cowan/atlas/cowan_atlas_15feb11,

• * Eur. Phys. J .C71:1554, 2011.

• Gives a very close estimation of the quoted significances. 

ZA =
h
2
⇣
(s+ b) ln

h
(s+b)(b+�1

b )
b2+(s+b)�2

b

i
� b2

�2
b
ln

h
1 + �2

bs
b(b+�2

b )

i⌘i1/2

µ̂b 1.3 3.8 3.8 388.6 493434 2109732
s = n� µ̂b 4.7 5.2 13.2 134 4992 9717
f = �b/µ̂b 0.231 0.237 0.158 0.0207 0.00142 0.000206

Quoted Z 2.7 1.9 4.6 5.9 5.0 6.4
ZA 2.8 2.0 4.6 5.9 5.0 6.4

http://www.pp.rhul.ac.uk/~cowan/atlas/cowan_atlas_15feb11

