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Machine learning

Searching for new physics in HEP
Classification of Signal (New Physics) to the background (Standard Model).

For most of the new physics models idiom looking for a needle in a haystack
does not actually suffice...
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Machine learning

A better version would be looking for a slightly different needle within a stack of needles.
We need to analyze all the inputs in a very affective way.
Machine learning!

Within HER the benefits are quite visible, the interest is high, but the support is limited.
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Machine learning

- Machine learning: an autonomous process where the Performance for a given Task is
improved by increasing Experience. (' T. M. Mitchell)

T — Classification of new physics events among standard model events, identification
of particle of interest among vast noise...

E — Number of events: asymmetrical samples (ie most of the time input includes only
0.01% signal.)

P —“Discovery!” (or to be less dramatic sensitivity), correct identification, being
resilient against pile-up...

- Rosetta for HEP - ML - Statistics (not true for all but safe to generalize)

- Label, Class: Signal & Background (we would like to be more explicit... BTW background
s noise for what it Is worth and we use noise mainly for instrumental fluctuations)

Performance: Sensitivity, significance

Performance criteria: Figure of Merit

Feature: Variable (I know... It is harder to pronounce for non-native that is why It is
preferred).
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Machine learning
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Machine learning

Data rate high
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Machine learning

Supervised

[ Decision trees J
Support Vector
Machines
[ Neural Nets J
Fischer
discriminant

Unsupervised

[Hebbian IearningJ
Principal
Component
Analysis
[ K-means J
[ DBSCAN J
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Machine learning

Supervised

[ Decision trees J
Support Vector
Machines

Neural Nets
(since 2013)
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Unsupervised

[Hebbian IearningJ
Principal
Component
Analysis
[ K-means J
[ DBSCAN J
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DBSCAN Is a an award winning (timing) density-based clustering algorithm.
In this talk, this algorithm is compared to a simple cone algorithm.

[t has two hyperparameters: Minimum distance (radius) and minimum
number of points.
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DBSCAN is a an award winning (timing) density-based clustering
algorithm.

[t has two hyperparameters: Minimum distance (radius) and minimum
number of points.
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DBSCAN is a an award winning (timing) density-based clustering
algorithm.

[t has two hyperparameters: Minimum distance (radius) and minimum
number of points.
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DBSCAN s extremely efficient for
eliminating noise,

detecting non-uniform clusters.

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
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Clustering algorithms

To reconstruct the objects, we cluster the hits in our detectors using various algorithms. The
readout is synchronous with LHC (ie ~40 MHz).

These algorithms are meant to be implemented in low level electronics.

In order to simplify the problem, a dimension reduction is performed by projecting the
“layers” into a single plane In Z.
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Software implementation

Z-projected

The clusters are ranked wrt to distance to center,

A secondary search is performed to find the neighbors.
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Software implementation

Z-projected

The clusters are ranked wrt to distance to center,

A secondary search is performed to find the neighbors.
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Software implementation

Z-projected

The sorted DBSCAN algorithm is approximately 20 times faster than the
unsorted search.

The sorted DBSCAN s as fast as the Cone clustering algorithm.
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Cluster shape comparison
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With no PU, both algorithms produce clusters with similar widths
(overlapping distributions).

Even though 1t is still significantly affected by the high PU, the DBSCAN
algorithm produces narrower clusters.
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Cluster shape comparison
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SVM

As a rather modern machine learning algorithm, SVIM is not widely used in the
HEP data analysis, with few exceptions. In this talk | want to focus on this
particular implementation.

We used a discovery significance based hyperparameter tuning algorithm.

We introduced an SVM classifier interface (SVM-HINT), which is based on a
widely used SVM library (LIBSVM), tailored for HEP searches.

Performance and optimization of support vector machines in high-energy
physics classification problems

https://grthub.com/ml-hint/svm-hint
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https://github.com/ml-hint/svm-hint

Support Vector Machines
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- What Is the optimal way to separate two linearly separable
distributions?
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Support Vector Machines

* SVM provides a unique solution to separate two class problems i.e. signal
from background.

L (0,7, a) = 3|0]* = 3 ailyi(w - T +b) — 1]
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Karush Kuhn Tucker Conditions

It the problem has a solution and it satisfies the following

condrtions: ~
a = 0,

* [hese conditions are known as the KKT conditions.

» The KKT conditions provide a generalization of the method of
Lagrange multiplier for the case of inequalities .
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Support Vector Machines

Method of Lagrange multipliers — can be generalized respecting KKT conditions.

Slack variables:

L %\@\2 -|-@Z§Z- — > gy (W-Z4+b) — 1+ &) — > Bi&i
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SVM: Non-linear case

1.2
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SVM: Non-linear case

1.5
- With a mapping in the form of 1.0 0o ©
X2 0.5
. Calculating a non-linear mapping > 0.0
may become cumbersome for large 05
number of dimensions. O
-1.0 O
-1.5
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SVM: Non-linear case

The decision function of SVM must be linear

Two non-linearly separable distributions can be linearly separable in a non-
inearly transformed space.

Calculating a non-linear mapping may become cumbersome for large number of
dimensions (in some cases Iinfinite).

Way out: SVM uses a 'kernel trick’ to circumvent this problem. By imposing the
stability conditions, the Lagrangian can be reduced to the functional:

(@) = —5 > > aioyyiy; (T - %) + 20
i g

Various kernels are available (Mercer's theorem). In this study, RBF (Radial Basis
Function) kernel is used:

K(fz, fj) — 6@37;_@"2
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IbSVM (Chang et. al.) is a well tested and widely used SVM library.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
IbSVM is using an improved version of Sequential Minimal Optimization.

The library 1s optimized and tested over many years.
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Hyperparameter optimization

SVM with RBF kernel has two hyper-
parameters which need to be set before
the application:

the slack variable parameter C,

the inverse kernel width y.

A discovery significance based algorithm
outperforms other performance measures
for the physics searches.

We implemented a custom grid search al-
gorithm for the Hyper-parameter optimi-
zation based on the Asimov significance
estimator.

~ A Buisealou

Two classes: Blue is background and red is signal

29
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Hyperparameter optimization

- A custom iterative grid search algorithm
s employed to optimize the hyper-
parameters:

In order to prevent over-training in the
least computationally cumbersome
way:

|Z54test) _Zj(qtra?n) |
dest)+ZSra1n)

Z _ ZSeSt) 1 —

« 7 Buisealou

-+ Starting from an initial set, € and y
parameters are scanned with a

focusing parameter (see the next
slide)

Two classes: Blue is background and red is signal
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Case Study |

- A simple toy example Is used to compare the time performance
of the implementations.

» The variables are sampled from:

L1 ~ g(xl‘av b)
Vo = X9 Ty ~ exp(—xa/c)
L3 g(CUg‘d, 6)
xq ~ exp(—z4/f)

~
|
&,

=
=

—

o
|
=

¥

<
|

- TMVA-BDT Is used as a benchmark implementation.
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Case Study |I: Runtime pertormance

—~ 1000 ¢
3 [ & TMVABDT (1 thread) O
2 [ o TMVA SVM (1 thread)
- L 0 SVM-HINT with prob. (1 thread) <
A4 SVM-HINT w/o prob. (1 thread) O
+ V. SVM-HINT w/o prob. (12 threads)
O
100 | A
' O
A v
<
10 O
v
A
(]
v
1 M 1 M 1 M 1 M 1 M 1 M
0 10000 20000 30000 40000 50000 60000

training events

«  The algorithms are optimized to have similar accuracies.
«  SVM-Hint with |2 threads has the fastest timing performance.
«  SVM-Hint scales with number of training events.

- BDT almost competitive in speed with lower number of training events.
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Case Study ||

Search for supersymmetry Iin single
lepton final states (14 TeV).

A benchmark SUSY model - an SMS
simplified model. The particular mass

parameters: Top quark super partner
mass of 900 and LSP mass 100 GeV.

Only the dominant SM background

tt — (I + jets)is and only this back-
ground Is considered for the sake of
simplicity.

Simulations performed with Delphes
fast simulation program including
pileup (same as used for Snowmass
study)
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Case Study |

25 variables are considered to dis-
criminate signal and background.

The variables are grouped into four
different sets with respect to their
complexity.

Low-level variables include basic
features of physics objects whereas
high-level variables are constructed
from these objects.

TMVA-BDT Is used as a benchmark
implementation.

Variable

Set 1

Set 2

Set 3

Set 4

low-level

pPT,i

m

PT jet(1,2,3,4)
Njet(1,2,3,4)
PT.bjet1

b jet1

Njet

T} jet

Bt
Hr

high-level

mt

174
Moy

Ag(W, 1)
m(l,b)
Centrality
Y
Hr-ratio
Armin(l, b)

Admin (71,2, B71)

36

Ozgur Sahin



SVM-HINT

SVM-HINT TMVA-BDT
Set NS Nb A NS Nb A ZSI‘OV

321+£06 1.0£1.0 \ 114 ) 24105 19414 8.0 5.1
23.2+0.5 23.9+L48 \2._5/ 16.24+04 10.5+3.2 W 1.5
37.8+0.6 9.6 3.0 6.1 |405%£0.7 9.6%3.0 6.4 3.7
33406 20.1x£44 3.7 |405%£0.7 354%£58 3.0 1.8

—~ 0 DN =

»  https://github.com/ml-hint/svm-hint

- SVM-HINT provides typically strong classification out of the box.

Sahin et al DOI:10.1016/j.nima.2016.09.017
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Case Study I

Classifier Responses

SVM-HINT response: set 1
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Both SVM-HINT and TMVA-BDT benefit from high number of variables.
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Comparison of the results

CMS Col., EP] C 73 (2013) 2677 DESY-THESIS-2017-014

L=195fb", {s=8 TeV
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5 350 —— BRI~ Gi=08 ] WO F come-m_o=m, ]
— - unpolarized top BF(i — ) = 0 - c - X, .
L u 2 s ——BFi e 0T ] 250— —
é, e :_ 0@ 0&":; —— BF{t — (if) “06 . | Private _
C AP —— BF(t <) =05 ’ B ]
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0 : ' ¥ |: » qd ot g I R R N RN SR A R S R A (7, ] L1 :I
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+  Improvement in the compressed region and in the high top-squark mass.
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Conclusion

A range of machine learning algorithms is widely employed in collider physics.

IMHO, we are still not at the front-line. ..

The possibilities are vast, but the support is imited. | hope collaborations with
other disciplines also help people to realize the importance.

As an unsupervised learning algorithm DBSCAN clustering algorithm is

presented. DBSCAN is proven to be fast, flexible and resilient against possible
noIse.

DBSCAN seems to perform better under high-PU.

An SVM interface for the HEP data classification problems using a statistical

significance (Asimov Significance estimator) based hyperparameter optimization
s presented. Avallable on Github:

https://github.com/ml-hint/svm-hint

The implementation provides a strong classification out of the box with a
built-in autonomous optimization.
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TMVA Package (a complete and easy to use HEP - ML software) built in to
the ROOT framework (a C++ based CERN - Fermilab developed analysis
framework for Big Data analysis):

TMVA: https://github.com/root-project/root/tree/master/tmva

ROOT:https://github.com/root-project/root/

Some books for interested (the first book is more of the fundamentals the
second book is related to Deep Learning which is not covered in this talk):

https:.//www.amazon.com/Pattern-Recognition-| earning-Information-
Statistics/dp/038/310/38

https://www.amazon.com/Deep-L earning-Adaptive-Computation-
Machine/dp/02620356 1 8/

Cowan et al (Asimov Paper) Eur. Phys. | .C/71:1554, 201 |

Sahin et al (SVM-HINT paper) DOI:10.1016/;.nima.2016.09.01/
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Asimov Significance

_ (s+0)(btol)] _ 52 s 1]
Za= [2 ((3 +0)In [b2—|—(s—|—b)ab§} - o? In [1 T b(biai)])}

http://www.pp.rhul.ac.uk/~cowan/atlas/cowan_atlas_|15feb| |,

* Eur. Phys. | .C71:1554, 201 1.

Gives a very close estimation of the quoted significances.

fip 1.3 3.8 3.8 388.6 493434 2109732
s=mn-—py | 4.7 5.2 13.2 134 4992 9717
f=op/fp | 0.231 0.237 0.158 0.0207 0.00142 0.000206
Quoted Z 2.7 1.9 4.6 5.9 5.0 6.4
ZA 2.8 2.0 4.6 5.9 5.0 6.4
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