Advances in Machine Learning in High Energy Physics Deep Learning, GAN and more

David Rousseau LAL-Orsay <u>rousseau@lal.in2p3.fr</u>

CEA/DRF seminar 15th May 2018

Outline

ML basics

□ ML in analysis

ML in reconstruction/simulation

□ ML challenges

UWrapping up

Focus on applications rather than details of the techniques

ML in HEP

- Use of Machine Learning (a.k.a Multi Variate Analysis as we call it) already at LEP somewhat, much more at Tevatron (Trees)
- At LHC, Machine Learning used almost since first data taking (2010) for reconstruction and analysis
- □ In most cases, Boosted Decision Tree with Root-TMVA, on ~10 variables
- For example, impact on Higgs boson sensitivity at LHC:

ML in HEP

Meanwhile, in the outside world :

- □ "Artificial Intelligence" not a dirty word anymore!
- □ We (in HEP) have realised we're been left behind! Trying to catch up now...
- □ This talk on very selected promising use of advanced ML in HEP

Multitude of HEP-ML events

ML Basics

BDT in a nutshell

□ Single tree (CART) <1980

□ AdaBoost 1997 : rerun increasing the weight of misclassified entries → Boosted Decision Trees (Gradient BDT, random forest...)

Classifier basics

under/over training

Neural Net in a nutshell

- □ Neural Net ~1950!
- But many many new tricks for learning, in particular if many layers (also ReLU instead of sigmoïd activation)
- Deep Neural Net" up to 100 layers
- Computing power (DNN training can take days even on GPU)
 Advances in ML in HEP David Rousseau, CEA/DRF, 15th May 2018

Deep learning

No miracle

- ML (nor Artificial Intelligence) does not do any miracles
- For selecting Signal vs Background and underlying distributions are known, nothing beats ihihood ratio! (often called "bayesian limit"):
 - $O L_{S}(x)/L_{B}(x)$
- OK but quite often L_S L_B are unknown
 - + x is n-dimensional
- ML starts to be interesting when there is no proper formalism of the pdf
- ➡ mixed approach, if you know something, tell your classifier instead of letting it guess

Advances in ML in HEP David Rousseau, CEA/DRF, 15th May 2018

Modern Software and Tools

- New version of TMVA (root 6.0.8 on beyond) (see talk Lorenzo Moneta, Sergei Gleyzer IML workshop CERN March 2018)
 - o Jupyter interface
 - Hyper-parameter optimisation / Cross-validation
 - o Interface to R, sk-learn etc...
 - However : better convert ntuples to numpy array and use the software below
 - Non HEP software
 - Sci-kit learn : de facto standard toolbox ML (except Deep Learning) (python, but fast)
 - Keras+Theano/TensorFlow : NN toolbox (build a NN in a few lines of python)→ but pyTorch lately gaining speed
 - XGBoost best BDT, both speed and performance (c++ with python interface) (check <u>T. Keck Comput Softw Big Sci (2017) 1: 2</u> for a comparison with TMVA and others). First use in physics paper :ATLAS Higgs ttH <u>arxiv 1712.08891</u>
 - Note : for ~10 variable classification/regression task gradient BDT is still the tool of choice!
 - Platforms
 - Your laptop is sufficient in many cases : install e.g. Anaconda https://docs.continuum.io/anaconda/install (demo)
 - If not, more and more platforms looking for users, maybe on your campus (with GPU DNN ==millions of parameter to optimise=>heavy duty linear algebra)
 - GridCL @ LLR (not for production but useful)
 - o 50 GPU platform at Lyon CC-IN2P3, little used so far
 - □ For CERN users:
 - o SWAN interactive data analysis on the web see https://swan.web.cern.ch/content/machine-learning
 - o CVMFS ML setup for any in CVMFS enabled plateons seau, CEA/DRF, 15th May 2018

What does a classifier do?

The classifier "projects" the two multidimensional "blobs" maximising the difference, without (ideally) any loss of information

Re-weighting

- Suppose a variable distribution is slightly different between a Source (e.g. Monte Carlo) and a Target (e.g. real data)
 - $\bullet \rightarrow$ reweight! ...then use reweighted events

var

- □ What if multi-dimension ?
- Usually : reweight separately on 1D projections, at best 2D, because of quick lack of statistics
- Can we do better ?

Multi dimensional reweighting (2)

- Reweighting the Source distribution on the score allows multidimensional reweighting without statistics problem
- Usual caveat still hold : Target support should be included in Source support, distributions should not be too different otherwise unmanageable very large or very small weights
- (Note : "reweighting" in HEP language <==> "importance sampling" in ML language)

Anomaly detection

Suppose you have two independent samples A and B, supposedly statistically identical. E.g. A and B could be:

- MC prod 1, MC prod 2
- MC generator 1, MC generator 2
- Geant4 Release 20.X.Y, release 20.X.Z
- Production at CERN, production at Lyon
- Data of yesterday, Data of today
- □ How to verify that A and B are indeed identical ?
- Standard approach : overlay histograms of many carefully chosen variables, check for differences (e.g. KS test)
- One ML approach (not the only one): ask an artificial scientist, train your favorite classifier to distinguish A from B, histogram the score, check the difference (e.g. AUC or KS test)
 - \rightarrow only one distribution to check
- Being developped for accelerator monitoring, experiment Data Quality monitoring

HSF ML RAMP on anomaly (2)

Classification without labels

- Metodiev et al, <u>1708.02949</u>
 Suppose one wants to separate S and B
- But one only has one signal rich sample Ms and one background rich sample Mb
- A classifier optimally trained with Ms and Mb (without information on fraction of S and B) is actually also optimal to separate S and B!
- →…allows training on data where it is hard to have very pure control sample
- ...one still need to evaluate classification perfomance
- Big caveat : works only if S and B pdf are indentical in Ms and Mb

ML in analysis

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CET

EXPERI

E

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells: Tiles, EMC

Candidat H→Z(→μ⁺μ⁻)Z(→e⁺e⁻)

~1E9 collisions recorded per year (+ simulation)

Persint

Deep learning for analysis

Signal efficiency

Deep learning for analysis (2)

1410.3469 Baldi Sadowski Whiteson

□ H tautau analysis at LHC: H→tautau vs Z→tautau

- Low level variables (4-momenta)
- High level variables (transverse mass, delta R, centrality, jet variables, etc...)

- Here, the DNN improved on NN but still needed high level features
- Both analyses with Delphes fast simulation
- ~100M events used for training (>>100* full G4 simulation in ATLAS)

Systematics-aware training

Our experimental measurement papers typically ends with

• measurement = m $\pm \sigma$ (stat) $\pm \sigma$ (syst)

 σ(syst) systematic uncertainty : known unknowns, unknown unknowns...

Name of the game is to minimize quadratic sum of :

 σ (stat) ± σ (syst)

 \Box ML techniques used so far to minimise σ (stat)

- □ Impact of ML on σ (syst) or even better global optimisation of σ (stat) ± σ (syst) is an open problem
- \Box Worrying about σ (syst) untypical of ML in industry
- However, a hot topic in ML in industry: transfer learning
- E.g. : train image labelling on a image dataset, apply on new images (different luminosity, focus, angle etc...)
- □ For HEP : we train with Signal and Background which are not the real one (MC, control regions, etc...)→source of systematics Advances in ML in HEP David Rousseau, CEA/DRF, 15th May 2018

ML in reconstruction

RNN for b tagging

BDT and usual NN expect a fix number of input. What to do when the number of inputs is not fixed like the tracks for b-quark jet tagging ?

- Recurrent Neural Networks have seen outstanding performance for processing sequence data
 - Take data at several "time-steps", and use previous time-step information in processing next time-steps data
- For b-tagging, take list of tracks in jet and feed into RNN
 - Basic track information like d0, z0, pt-Fraction of jet, ...
 - Physics inspired ordering by d0-significance
- RNN outperforms other IP algorithms
 - No explicit vertexing, still excellent performance
 - First combinations with other algorithms in progress
- Learning on sequence data may be important in other places!
 - Combining tracks with clusters? Track to vertex matching?

ATL-PHYS-PUB-2017-003

Jet Images

arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman

- Distinguish boosted W jets from QCD
- Particle level simulation

Average images:

A

Jet Images : Convolution NN

End to end Learning

End to end learning

- Train directly for signal on « raw » event ?
- Start from RPV Susy search
- ATLAS-CONF-2016-057
- Fast Simulated events with Delphes

- Project energies on 64x64 ηxφ grid
- Compare with usual jet Reconstruction and physics Analysis variables such as:

End to end learning (2)

End to end learning (3) TTTTT 1.0 0.8 Signal Efficiency 0.6 CNN Log Weights 0.4 3 Channel Ensemble GBDT 0.2 MLP **Physics Selections** 0.0 0.0002 0.0004 0.0006 0.0008 0.0000 0.0010

Background Efficiency

- >x2 gain over BDT/shallow network using physics variable and 5 leading jet 4momenta
- \Box **\rightarrow** CNN extract information from energy grid which is lost in the jets ?
- □ Not sure they should compare to applying DL on the jets Advances in ML in HEP David Rousseau, CEA/DRF, 15th May 2018

ML in simulation

Generative Adversarial Network

Condition GAN

Text to image

this small bird has a pink breast and crown, and black primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

this magnificent fellow is almost all black with a red crest, and white cheek patch.

this white and yellow flower have thin white petals and a round yellow stamen

GAN for simulation (1)

GAN for simulation (2)

Tracking Machine Learning challenge 2018

A collaboration between ATLAS and CMS physicists, and Machine Learners

TrackML : Motivation

- Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
- HL-LHC (phase 2) perspective : increased pileup :Run 1 (2012): <>~20, Run 2 (2015): <>~30,Phase 2 (2025): <>~150

- → I racking challenge launched 1st May 2018
- Follow us on twitter @trackmllhc !

Pattern Recognition/Tracking

- Pattern recognition/tracking is a very old, very hot topic in Artificial Intelligence, but very varied
- □ Note that these are real-time applications, with CPU constraints

/L in HEP David Rousseau, CEA/DRF, 15th May 2018

Advances in ML in HEP David Rousseau, CEA/DRF, 15th May 2018

TrackML Leaderboard 15/05/08

T

https://www.kaggle.com/c/trackml-particle-identification/leaderboard					[~] fraction of points correctly assigned		
#	\triangle 1w	Team Name	Kernel	Team Membe	Score 🕜	Entr	Last
1	▲1	Mickey			0.4610	5	8h
2	* 1	Grzegorz Sionkowski		9	0.4225	6	3d
3	new	Konstantin Lopuhin			0.3254	3	1d
4	new	Lin12345			0.2969	7	1d
5	▲ 3	Heng CherKeng		e	0.2886	20	2d
6	▼3	TeraFlops			0.2819	14	6d
7	▲ 56	Austin&Yair			0.2697	10	2d
8	new	Kimura			0.2673	8	14h
9	▲ 3	PEQNP.TECH		Jen.	0.2661	33	2h
10	—	Bhaskar Lachman Khu	ub		0.2630	43	14h
11	new	FlaDM			0.2610	2	15h

Wrapping-up

ML playground

ML Collaborations

- Many of the new ML techniques are complex difficult for HEP physicists alone
- □ ML scientists (often) eager to collaborate with HEP physicists

- o prestige
- o new and interesting problems (which they can publish in ML proceedings)
- Takes time to learn common language
- Note : Yandex Data School of Analysis (with ~10 ML scientists) now a bona fide institute of LHCb
- □ Access to experiment internal data an issue, but there are ways out → more and more Open Dataset
- Very useful/essential to build HEP ML collaborations : study on shared dataset, thesis (Computer Science or HEP)
- □ There is always a friendly Machine Learner on a campus!

Open Data

- Public dataset are essential to collaborate (beyond talking over beer/coffee) on new ML techniques with ML experts (or even physicists in other experiments)
 - o can share without experiments Non Disclosure policies
- Some collaborations built on just generator data (e.g. Pythia) or with simple detector simulation e.g. Delphes
 - o good for a start, but inaccurate
- Effort to have better open simulation engine (e.g. Delphes 4-vector detector simulation, ACTS for tracking)
- UCI dataset repository has some HEP datasets
- □ Role of CERN Open Data portal:
 - We (ATLAS) initially saw its use for outreach purposes (CMS has been more open on releasing raw data)
 - But after all, ML collaboration is a kind of scientific outreach
 - →ATLAS uploaded there in 2015 the data from Higgs Machine Learning challenge (essentially 4-vectors from full G4 ATLAS simulation Higgs->tautau analysis)
 - ATLAS consider releasing more datasets dedicated to ML studies

Collection of links

- In addition to workshops mentioned in the first transparencies, and references mentioned in the talks
- Interexperiment Machine Learning group (IML) is gathering speed (documentation, tutorials, etc...). Topical monthly meeting. Workshop 20-22 March :
- □ An internal ATLAS ML group has started in June 2016. In CMS in June 2017
- https://higgsml.lal.in2p3.fr
- <u>http://opendata.cern.ch/collection/ATLAS-Higgs-Challenge-2014</u>: permanent home of the challenge dataset
- NIPS 2014 workshop agenda and proceedings <u>http://jmlr.org/proceedings/papers/v42/</u>

- Mailing list opened to any one with an interest in both Data Science and High Energy Physics : <u>HEP-data-science@googlegroups.com</u> and <u>Ihc-machinelearning-wg@cern.ch</u>
- IN2P3 project starting <u>http://listserv.in2p3.fr/cgi-bin/wa?A0=MACHINE-LEARNING-L</u> open to anyone with some interest to ML (planning on 2 x 1day workshop per year)
- NIPS 2017 DL in HEP workshop
- □ IN2P3 School of Statistics 28 May 1 June 2018 To be Confirmed (see <u>SoS 2016</u>)

Conclusion

- We (in HEP) are analysing data from multi-billion € projects→should make the most out of it!
- Recent explosion of novel (for HEP) ML techniques, novel applications for Analysis, Reconstruction, Simulation, Trigger, and Computing
- Some of these are ~easy, most are complex: open source software tools are ~easy to get, but still need (people) training, know-how
- More and more open datasets/simulators
- More and more HEP and ML workshops, forums, schools, challenges
- More and more direct collaboration between HEP researchers and ML researchers
- □ HEP will need more and more access to (GPU) training resources
- Never underestimate the time for :
 - o (1) Great ML idea→
 - (2) ...demonstrated on toy dataset →
 - o (3) ...demonstrated on real experiment analysis/dataset \rightarrow
 - (4) ... experiment publication using the great idea