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How to predict Alzheimer’s Disease from DNA?

Alzheimer’s Disease:

* A neurodegenerative disease associated with cognitive disorders and
memory loss

* Prevalence: almost 20% in people over 80

Some genetic origins:
« Common form caused at ~75% by genetic factors

« But the known causal genes account only for 8% (main gene APOE
accounts for 6%)
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Alzheimer’s Disease Neuroimaging Initiative

—  (ADNI)
e Clinical information on 809 individuals:
- 188 patients with Alzheimer’s Disease (AD)

- 393 patients with Mild Cognitive Impairment (MCI)
- 228 controls

« Genetic Data available

 Brain imaging data (MRI) also available

How to predict the patient/control status from
DNA?
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C2Aa Outline

Part 1 : A few notions in Genetics

Part 2. The univariate approach
2.1 Genotyping data
2.2 Sequencing data

Part 3. The multivariate approach (machine learning)
3.1 Sequencing data
3.2 Genotyping data
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Part 1:
A few notions in Genetics
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Human genome
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« 22 pairs of homologous
chromosomes + X Y

. 2 identical chromatids per
chromosome

. 2 complementary strands
per chromatid

« Each strand: sequence of

nuceotides (Adenine, Thymine,

Cytosine and Guanine)
« 3 billion base pairs

« About 2% of DNA coding for
proteins: 25 000 genes
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C2Aa Single Nucleotide Polymorphisms (SNPs) 1/2

« SNP: position on the genome where a single

nucleotide varies in the population (>1% of individuals)

— due to an ancestral mutation

. Main form of DNA variability in the population
(about 30 million SNPs)

« About 3-4 million single nucleotide differences between 2 individuals

« Usually only two possible alleles for a SNP:
one major (e.g. A) and one minor (e.g. G)

- The genotype of an individual is defined by
considering the pair of homologous chromosomes:
3 possibilities (e.g. AA, AG or GG)

— often coded as the number of minor alleles:
0 (AA), 1 (AG) or 2 (GG)
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C24Aa Single Nucleotide Polymorphisms (SNPs) 2/2
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SNPs may be located :

* inside a gene:
- in an exon (coding for the protein) : synonymous or not
- in an intron (non-coding)

« outside a gene
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C2A Linkage Disequilibrium (LD) 1/3

. LD: non-random association of alleles between two SNPs
— often due to physical linkage (ie SNPs on the same chromosome)
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— The 2 SNPs transmitted together trough generations

« Recombination between homologous chromosomes during meiosis

— Probability of recombination increases (and thus LD decreases)
with the distance between the 2 SNPs
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Linkage Disequilibrium (LD) 2/3
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CQa Linkage Disequilibrium (LD) 3/3

 Non-homogeneous recombination between homologous
chromosomes during meiosis: hot spots of recombination

— LD blocks
LD blocks
e ! ~
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Hot spots
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Genetic diseases

Monogenic (Mendelian) diseases:

« Caused by one single gene

» High effect (often lethal)

« Rare mutations (due to genetic selection)

Polygenic (complex) disease:

« Caused by several genes (not the same in every patient)
* Moderate effect

« Common polymorphisms

— The common type of Alzheimer’s disease in a complex disease
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Genotyping data

Not the whole genome sequence is observed
 Only some of the known SNPs all over the genome
1 million SNPs on common chips today

 Mainly common SNPs (>5% in the population)

« Enough to capture most of the common genetic variability and to
guess all other SNPs by knowing LD
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C2A Whole Genome Sequencing data

« The whole genome is sequenced (3 billion bases) for each individual

« Chromosomes not sequenced in one piece:
Short “reads” of about 100 nucleotides are sequenced
« Bioinformatics tools needed to reconstruct the whole sequence:
- Eachread is aligned on a reference sequence
- Variations from the reference are identified (e.g. SNPs, SNVs)

- Only variations from the reference are stored in the final file
(3-4 million SNPs/SNVs per individual)

« Each nucleotide is sequenced about 30 times to avoid errors

.
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Moore's Law

“-Elilml"”illﬂm National Human
Il Hﬂl Genome Research
Institute

genome.gov/sequencingcosts
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Part 2:
The univariate approach
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Part 2.1:
The univariate approach
on ADNI genotyping data
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Alzheimer’s Disease Neuroimaging Initiative

Genotyping data

« 809 individuals:
- 188 Alzheimer’s Disease (AD)
- 393 Mild Cognitive Impairment (MCI)
- 228 controls

« The 809 individuals were genotyped with SNP array with 2.5 million
SNPs

4
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C2A Classical statistical analysis of genotyping data

Univariate approach:
. Test for the association of each SNP (with the phenotype) independently
. If the phenotype is disease (case) / not disease (control):

Is the distribution of the 3 genotypes the same for cases and controls?

For example for a SNP with two possible alleles A and T:

_________[Cases Controls

AA 20 10
AT 40 66
TT 75 163

— p-value of a Chi-square test = 0.007 but many tests (= nb SNPs) !!

Need to correct for multiple comparisons
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C2A Different univariate tests for case/control study

Genotypic test:
The most general
Not very powerful on average to detect moderate associations (higher nb of
degrees of freedom)

_________[Cases Controls

AA 20 10

AT 40 66

TT 75 163
Allelic test:

Assumes the 2 alleles of an individual are independent (Hardy-Weinberg)
Assumes additive effects of alleles
Powerful in most cases

___________[Cases Controls

Minor allele A 20*2+40=80 10*2+66=86
a Major allele T 75*2*40=190 163*2+66=392
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DE LA RECHERCHE A LINDUSTRIE

e Univariate tests for a quantitative phenotype

. If the phenotype (y) is quantitative — simple linear regression

. Like for case/control studies, an additive model is usually used:

y = g + 8 x #minor alleles

B#07?
(T-test)

cholesterol

aa
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P-value correction in Genome-Wide Association

—  Studies (GWAS)

“Manhattan plot” of the p-values of the SNPs along the genome:

Significantly associated SNPs
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« Bonferroni correction commonly used to correct for multiple tests:

1 million SNPs on common chips
— genome-wide significance threshold: 5*102/ 10 = 5*1078
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CZ2A Power of GWAS

« The test will be more powerful to detect an association:
- with high sample size (often 10s of 1000s of individuals)
- with frequent polymorphisms

- with strong effects

4
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C2A  Population structure within Europe

Principal component analysis
on 197,146 SNPs (coded O, 1 or 2)
In 1387 individuals

— When plotting the two first
principal components, the map of
Europe appears!

— even possible to distinguish
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C24a Problems with population structure in GWAS 1/2

« Sampling bias for a case/control study:
If the % of each population different in cases and controls

‘ Cases Pop. 1 ‘ Cases Pop. 2
Q Controls Pop. 1 Q Controls Pop. 2

Sample

— Alleles specific to Pop. 1 artificially associated with the disease!

U4
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Problems with population structure in GWAS 2/2

 For a quantitative trait:
If the 2 populations have different means (due to sampling bias, to
different lifestyles)

Histogram of Trait Values

Population 1
Population 2

] =

-— Alleles specific to 1 population artificially associated with the trait!
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C2A  GWAS results of ADNI genotyping data

« Comparison of Alzheimer patients (188) versus others (621) on the
2.5 million SNPs

« 3variants with a significant p-value after Bonferroni correction
(p<2*10-8) with x? test or Fisher exact test

- 1 in APOE intron and in regulatory region (p=1.4*101?)
- 2 in intergenic regions near APOE (p=3*10-13 and p=6*10-14)

« Associated variants are frequent (Minor Allele Freq. 20-40%)
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Global results of GWAS

« GWAS on genotyping data have identified many SNPs (14000)
significantly associated with more than 1500 phenotypes

« But they only explain a small portion of the phenotypic variance
(8 % for Alzheimer’s disease instead of 75%!)
— Missing heritability

« Many possible reasons for missing heritability:
- rare variants
- interaction effects between variants
- many small effects that cannot be detected with current sample sizes

.
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CZ2Aa Global results of GWAS on diseases
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CZ2A Global results of GWAS on diseases

Family studies 1K GWAS
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CZ2A Global results of GWAS on diseases
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CZ2A Global results of GWAS on diseases
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Part 2.2:
The univariate approach
on ADNI sequencing data
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Alzheimer’s Disease Neuroimaging Initiative

Sequencing data

« 809 individuals with Whole Genome Sequencing data
- 188 Alzheimer’s Disease (AD)
- 393 Mild Cognitive Impairment (MCI)
- 228 controls

* ~4 million variants per individual
— ~60 million variants for all individuals

 63% of the SNVs with good quality
— ~40 million variants of good quality

7 4
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Many rare variants and a few annotations in

ADNI

Among the 40 million variants of good quality :

* 46% of variants are specific to only 1 individual:
18 400 000 variants

= <1% of the variants of an individual are specific to this individual :
20000-25000 variants

« 2% of the variants located in genes (coding for proteins)

 15% of the variants are annotated by epigenetic markers seen in
brain cells (DNA regions not necessarily coding for proteins but
influencing the transcription into RNA)

4
| PAGE 36
‘_’_ CENTRE NATIONAL DE RECHERCHE

- EN GENOMIQUE HUMAINE



Statistical analysis of WGS ADNI data

« Comparison of AD patients (188) versus others (621)

« 16 SNPs with a significant p-value after Bonferroni correction
(x? test/Fisher’s exact test) : 1018 <p< 10
in the APOE region (36kb)

« Top associated SNP:
rs429358 (non-synonymous) : p=5*10-18
One of the 2 SNPs of APOg4 allele

« Associated variants are frequent (MAF 20-40%)
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C2A LD structure between the significant SNPs
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C2A Among top associations (35 SNPs with p<107)

APOE region on chromosome 19
rs429358 (missense) : p=5*10-18
One of the 2 SNPs of APO¢g4 allele

PCDH11X on chromosome X
rs2750788 (intron) : p=4*10-3
Already associated with Alzheimer’s Disease

LINGO2 on chromosome 9
rs2578253 (intron) : p=5*10-8
Already associated with Parkinson’s Disease

ATP11C on chromosome X
rs2485724 (intron) : p=2.5*108

4
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Limitations of univariate analysis of Whole

Genome Sequencing data

« Univariate GWAS methods (linear regression, chi-square) may be
applied BUT:

- much more multiple comparisons (tens of millions)

- very low power to detect association for rare variants

« More individuals needed but expensive (>1000$% per individual)

« Statistical methods need to be adapted by collapsing nearby
variants: Region-based analysis (multivariate approach)

— stronger signals and fewer tests (20000-25000 genes)

CNRGH | PAGE 40
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Part 2:
The multivariate approach
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Part 3.1:
The multivariate approach
on seguencing data
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C2A Region-based analysis for sequencing data

Multiple regression model :
e pvariants in a certain region (e.g. a gene)
* Genotypes of individual i : X, (1 X p), coded O, 1 or 2

« Covariates of individual i : Z; (1 X k) such as age, sex, pop. structure

» For acase/control (1/0) phenotype Y, :
logit(p,) = In (1’_';“) =a,+Za+Xp withp, =P(Y,=1|X,Z)

 Test of no region effect: Hy: B = (B, ....,8,)" =0

7 4
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C2A Sequence Kernel Association Test (SKAT)

 Recall of the multiple regression model:

E(Y|X,Z)/logit(p) =ay+Za+ X,

e Assume random effects:

B; ~distribution (0,w;*1) where w? is an optional weight for
variant | (higher for rare variants)

« Test of no region effect:

Ho:Bi==f,=0 o t=0

4
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C2A  SKAT results on ADNI sequencing data

SKAT tests the association of a group of variants (a gene) with
the phenotype, assuming additive effects of variants:

« SKAT on each full gene: no significant results after
correction even on candidate genes

« SKAT on each gene with exons only: 2 significant genes
(p=10-%) after correction APOE and SORBS3 (already
associated with Alzheimer’s disease)
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Part 3.2:
The multivariate approach
on genotyping data
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~~= Heritabilty on genotyping data to predict
%% y on genotyping P

— Alzheimer’s disease

Heritability on SNPs:
Same model as SKAT (logistic regression with additive random
effects) but on genome-wide common SNPs

Results obtained on Alzheimer’s disease genotyping data:

- with 809 individuals (188 AD/621 controls) and 2.5M SNPs
from ADNI : heritability of 10% but high variance

- with 9900 individuals (2400 AD/7500 controls) and 500K SNPs
from CNRGH : heritability of 75%!
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Results of multivariate methods on genotyping

data to predict Alzheimer’s disease

Results obtained on Alzheimer’s disease genotyping data using
AdaBoost (trees) or Random forests:

- with 809 individuals (188 AD/621 controls) and 2.5M SNPs

from ADNI
- with 9900 individuals (2400 AD/7500 controls) and 500K SNPs
from CNRGH
Data set Accuracy Accuracy Global
AYD controls accuracy
ADNI genotyping 6% 100% 63%
data
CNRGH 46% 93% 82%

genotyping data
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Summary of multivariate analysis of ADNI data

» At the gene level with sequencing data, significant association for
APOE and SORBS3 only and driven by common SNPs

« At the whole genome level with genotyping data, classification
algorithms failed on ADNI data

 Improvement when much more samples and fewer SNPs

._CNRGH | PAGE 49

EN GENOMIQUE HUMAlNE



Conclusion on the prediction of a phenotype from

genome-wide data

« Atthe gene/SNP level, a few significant associations and mainly
on common SNPs (no great improvement with sequencing data
and rare variants yet)

« At the whole genome level multivariate algorithms are promising

on genotyping with common SNPs data suggesting cummulative
effects of many SNPs

 Butwe need many samples! Alot are coming.... (even companies
like Google)

« We needto integrate other sources of omics data (RNA, proteins,
DNA methylation, DNA 3D structure, ... ) and biological knowledge
(such as gene networks)
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