Machine Learning for
gamma-ray burst images
classification

B. Hubert, CEA (Irfu/DAp) 09/02/2026, Saclay, In The Art
S. Schanne, CEA (Irfu/DAp) 1

SVOM Mission [ECLAIRs

e Satellite launched in June 2024, French-Chinese
collaboration between CNSA+CNES (+CEA+CNRS)

e Dedicated to Gamma-Ray Burst (GRB) studies
(formation of black holes in distant Universe)

Different instruments on SVOM Satellite

e Multiple instrumets Onboard : ECLAIRS,

VT, MXT, GRM... To analyze GRBs in
. different parts of the spectrum
e ECLAIRs + Onboard trigger : detection
of new transient gamma-ray source,
localization in the field of view (FoV 2 sr),
repointing spacecraft in 2 min for

follow-up (Visible & X-rays)

Black hole
engine

Prompt
emission

Representation of a gamma ray burst

SVOM Mission [ECLAIRs trigger

Some statistics about ECLAIRs trigger up Nov 2025 :

e /2 GRBs detected
e 379 Known Gamma-ray sources (238 in onboard CAT, 141 not in CAT)

e 380 false alerts
» 848 triggers (682 VHF Subimages from IMT, 166 VHF Shadowgrams from CRT)

There are 2 independent trigger algorithms running onboard ECLAIRS:
e CRT: searches for count-rate increase on timewindows from 10 ms to 20.48 s duration,
then imaging best timewindow found (max 1image every 2.56 s), search excess
=> GRB Alert sequence with VHF Shadowgram => not used in this work
e IMT: produces sky images every 20.48 s (on 4 energy bands), stacks the images to reach
timewindows from 20.48s to 22 min, search best excess not in onboard source CAT
=> GRB Alert sequence with VHF Sub-Image => studied in this work

SVOM Mission [ECLAIRs

What happens for real onboard ?

The onboard trigger calculates SNR images of
the sky (200x200 pixels) every few seconds.

On this image, differents values are calculated: el S s
maximum value, standard deviation, difference Obs 553 Obs 434 Obs 600

between maximum and second maximum... .

Those values go through different filters/ " b 25 obe 75

thresholds, and triggers an alert sequence sent
to the ground over the VHF network. »
A sub image (56x56 pixels) is sent at the end of

this alert sequence (for a trigger by IMT). e e e

SVOM Mission [ECLAIRs

When an alert sequence is sent:
e Subimage to the ground
e Automatic request for a slew (repointing of the satellite) Finstein probe Telescope

On ground a person, the “Burst Advocate” on shift, has to decide:
e was it a True GRB ? => organize ground follow-up with visible telescopes,
space follow-up with other satellites (Swift and Einstein Probe) |
e was it a False Alert ? => cancel the SVOM repointing, invalidate follow-up Swift Telescope
started

After ~1.5 year of operations: about 75 True GRBs + hundreds known sources +
hundreds False Alerts => huge work for Burst Advocates

» Automatic classification ? Machine Learning algorithms applied to sub-images to help

decision making

What is the goal ? What are the main difficulties ?

To summarize the goal : Help the decision making for a GRB alert

Basically : Computer Vision — a subfield of Al that equips machines with the ability to
process, analyze and interpret images (or videos).

Not so basic in our case, why ? Our database :
e 540 images (true and false triggers combined)
e incomplete images (not 56x56)
e unclear cases (where even the human can't really decide wether it is a true GRB or not)

Incomplete images Unclear decision Earth appearing Incomplete + unclear

What is the goal ? What are the main difficulties ? E

Main problem with our small database :

e overfitting : when the model is very efficient on the training set but not on the test set.
The model learns by heart images and can’t adapt.

Main problem with incomplete images:

e Convolutional Neural Networks (CNN) require as inputs a fixed size. How can we fill the
Images without disturbing the model ?

Main problem with unclear cases:
e |f even humans hesitate on the decision for a subimage, with lots of additional data,
how can a CNN predict easily on those unclear cases ? (spoiler, it can't)

Multiple solutions:
e Transfer learning — use a pre-trained model to prevent overfitting
e Data augmentation — increase artificially the dataset to prevent overfitting
e Mask associated with a subimage — fill the incomplete images without disturbing the model

7/

What solutions do we consider ? H

We considered multiple solutions :

1) Hand made model, trained from scratch

2) Hand made model, trained from scratch, with a mask associated with each subimage
3) Transfer learning

[4) Autoencoders (did not have time to implement it yet)]

[5) IsolationForest (new idea)]

Mask concept:

e “0” for what the model should not take into account
(missing part of a sub-image, FOV edges) — red

e “1" for the background (useful data) — green

S N s L
PR RRPR R R R Rk
RRr RR R R R R
RRRRRIRRR|R
HI—‘I—‘!—‘HI—‘I—‘I—‘!—‘
S R
R N L

e "2" for known sources —

e “3” for the pixel that triggered the alert — blue

R R R R R R R R R
PR R R R R R R R
RlRr R R RR[(RIR R

R i R
R R R R R R R R e
R R R R R R RN
R R R R R R R R R
I-‘-I—‘-I—‘I—‘HI—‘-I—\I—‘I—"
R R R RR R R R R

What solutions do we consider ?

Here are the outcomes of basic tests/studies/researchs to identify the best solution:

e Filling the images with “0” is enough, the additional mask does not help a lot, since
the model identify on his own which data is useful
e Indicating the triggered pixel (value “3”) is not useful, since the sub-image is always
centered on the triggered pixel
e Training a model from scratch has lots of defaults :
= A lot of parameters possible (number of layers, number of parameters, what
type of layers...) = | do not have the expertise to do so
= The performance is poor compared to transfer learning
e Transfer Learning is the most promising (and environment friendly)

Combined with other methods (Data Augmentation...) = we can avoid overfitting and

have good performance v
N

6

Transfer Learning E

1) What is transfer learning ?

The concept of Transfer Learning is to use a model trained on millions of generic
images (typically ImageNet set of images) and to adapt it to our dataset

Here is the general idea for a CNN : .
Convolutional layers

are responsible for
the patterns and

.(//.\\Ql//. N\

" \ &
(//A\\\J{/A o

AN
\we?/: O NPy /A\ ®
S NV 0, SNy SRINYTs1p)) .
SOTI) 507 0 NVl @ LTINS o recognition
N R S A X A R S
N00E @ SN LTS BN @ R
N e Yy Uy ¥ o 0 QST W A YAV
Inputs 0 SN (ue @ 2Vt @ SR NS Outputs
R R R SO

\’»"Y "~ ‘ WA VA \/ (Y \
CIXSA ARG KON SO I 7 X<
RN AR YINELON 5

NV 2\ e 798 o 7o\
I v v v

— Classification layer 10

Convolutional layers

Transfer Learning

1) What is transfer learning ?

During training on our dataset :

(//A\\\Q//A\\‘ v

\\\\\ llm
/A o A\V 5{/A

“" "J N 7 I’,
3 »f/l* Vo e liVi e RE f/‘\\ XS

&‘ T N T N\ A
X< ’ ’ '(0 t"ﬁ“""«"& $! ll‘.“‘ 999
Input S "".{t#‘\ "/ \ ’ ‘ if!. "f‘k"! " ,‘; '« (/ \"Y‘%’!g\ OUtpUtS
“'

'%Ké {é.f,-;, A {: '::; SRR ?\'/, (,,3 :;. ofr".;
\\'/}«i';\. \t“ N ‘;:.o 24 WS So

//6 ‘ ‘ \‘!!frf;'; A“}\\\\!{/” ‘ ;}“ .v,;*\\.
QvAAvV4E

Classification layer

Convolutional layers

Only the wieghts and biases of the classification layer will update during training 11

Transfer Learning | | E

Test]

2) How to implement Transfer Learning ? Train Validation

e Split trainf/validation/test : (not specific to transfer learning) we split our full dataset into 3
The choice | made is a 50/20/30 repartition :
We need a big amount of data to train but we are going to do data augmentation on it so 50% is ok
Validation set is just to follow if our model is really learning something
Test set is here to evaluate our model at the end (can’t be too small otherwise it's not representative)

e We prepare our data to the pre-trained model :
= Resize from 56x56 to 224x224
= Normalisation ‘ T
= Data augmentation (not necessary generally speaking) ~ , ,
= Transformation into tensors (typical inputs for a model) varch VR -

e We divide our train dataset into batches of a certain size (eg batch size of 50 for 200 images is 4
batches)

12
e We load the pre-trained model, and we start the training part on our dataset

Transfer Learning E

3) How do we optimize model’s training Our goal : have the best model
“best” = a model that predicts the right

What parameters can we play on ?

e split (50/20/30 ou 70/15/15 ou ...) decision every time

e data augmentation

 normalisation : global ? local ? others ? -
e batch size

e humber of epochs Q‘ > @
e |oss calculation choice ;

e scheduler choice - il @

e Ooptimizer choice &\ m (

e learning rate
T -_ -l

e which data (with each subimage)
e fine tuning on or off

=> LOTS OF PARAMETERS : we need to find which value/choice is the best for each parameter
(we understand now why a hand made model is even more complex, because even more
parameters to adjust) 13

~ dataset
Transfer Learning J 1 j E
| I.}allch I}alfc:h -

We consider 1 batch of images : (reminder, we divided our train dataset into batches)

4) What happens during training ?

e We give this batch to the model The model answers with what it knows
e |t tries to predict the good output =
e We calculate the loss (CrossEntropy, MSE...) Forward pass
* We calculate the loss gradient The model understands where it went wrong
e |t gives, layer by layer, how each weight =
influences the decision Backward pass

e We update the parameters (weights and
biases) of every neurons — depending of
the learning rate

The model updates its weights to reduce the error
(choice of the optimizer)

14

Transfer Learning H

4) What happens during training ?

To summarize : for 1 batch — forward pass [/ backward pass [update of weights

Exemple : we have 500 images, and batches of 50 images, then we have 10 batches.
That means that we will have to do 10 times the forward/backward/update process

When the dataset have seen the 10 batches, we completed an epoch
To make it simple : an epoch is done when the model has seen all the images from the dataset

Now, we can repeat this multiple times (choice of the number of epochs)

Dataset

Test

Train Validation

\‘ We used our train dataset 15

Transfer Learning E

4) What happens during training ?

Reminder, an epoch is done when the model has seen all the images from the train dataset

But what the validation set is for ?
— At the end of each epoch, we “validate” the model

The model tries to generalize what he learnt from the training. We calculate different metrics,
to follow if the model is still learning or if it's stuck somewhere.

&It doesn't adjust its wheigts during validation &

Training and Validation Accuracy

>

Training Set Accuracy

1.0 —_————

> — o~ 3""
& [y
Vo 5
0.9 / g
>~ ~ Overfitting
©)
O
5 0.8 :
8 { Test Set Accuracy © Eganly Stopping
<< 0.7 Epoch
—— Training Accuracy /
. - Validation Accuracy : >
0.61— : : : : : : Epoch
0 5 10 15 20 25 30 35 g 1 6

Epochs

Transfer Learning

5) What happens after training ?

When the training is complete, the model is fixed and won't move anymore (as long as we
don't train it again).
We can now test it on the test set, a set of images he has never seen before.

To summarize :

F pOCh] Training on the whole train set Validation on the validation set

E poch) Training on the whole train set (different batches) Validation on the validation set

E pOCh 30 Training on the whole train set (different batches) Validation on the validation set

Final test on the test set
17

Transfer Learning E

5) What happens after training ?

With that in mind, we now want to adjust every parameter possible to have the best model.
In order to do that, we need some indicators/values that help us make a decision :

A) Performance:
= Accuracy (% of good predictions on the test set) @
= Precision (ratio between true positive and all positives)

B) Least overfit:
= Train accuracy VS validation accuracy curve | T

pppppppp

C) Good stability :
= Validation accuracy stable at the end ?

D) Probabilites repartition :
= At what point the incorrect prediction are separated from the good ones

18

Transfer Learning
5) Analysis

A)_Performance : the simplest analysis (compare different values)

Exemple :

experiment model_name] accuracy precision Jrecall F1 train_time_sec batch_size Ir epochs 1
0 resnet18 _with_SNRmax_finetune_normvraimentMAX ResNet18 with_ SNRmax§ 97.530864 0.961538 1.0 0.980392 232.911536 16 0.0001 30
1 resnet18_with_SNRmax_finetune ResNet18_ with_SNRmax |} 96.296296 0.943396 1.0 0.970874 272.757874 16 0.0001 40

It gives a good idea if a model performs well, but it is absolutely not enough to make a decision

19

Transfer Learning H
5) Analysis

B)_Least overfit possible : we compare performance on the train set and on the validation set

ResNet18 - finetuned + SNR max + SNR std ResNet18 - data2 - bs16 - norme globale

/W

100 4
09T - Validation accuracy
a0 4
0.8 4
80 4
) > 0.7
g E
5 701 é
b g

Generalization gap - ResNet18 - finetuned + SNR max + SNR std Generalization gap - ResNet18 - data2 - bs16 - norme g|gba|e

0.40 -
—— Train accuracy V S
Validation accurac 0.35 -

0.30 - h

0.25 4

Train acc - Val acc
Train acc - Val acc
(=]
~J
o

0 10 20 30 40 50 L i e —— — ——— —
Epoch 0 5 10 15 20 25 30

Epoch

Overfitting model : train accuracy
above validation accuracy 20

Well fitted model : small difference
between validation and training
cruve

Transfer Learning

5) Analysis

C)_Good stability : we want the validation accuracy curve to be stable at the end

—— resnetl8_SNRmax_SNRstd_100ep_le-5

85 1

70 1

40 —— resnetl8_full_S50ep_le-5

0 20 40 60 80 100
Epoch

Epoch

Good stability Bad stability

This stability depends a lot on the value of the learning rate and the presence of fine tuning

21

Transfer Learning E

5) Analysis

D)_Probabilites repartition :

At the end, we want a model that can predict with a lot of certainty if an alert is a true GRB or
a false alert.
BUT in the worst case, we prefer it says “l don't know” than saying a verdict it's not sure of.

Probabilités : bonnes vs mauvaises prédictions

200 1

Here are the probabilities the model calculated
before giving an answer (0 or 1, true or false)

e In blue, the good prediction

e In , the bad prediction

175 1
150 A

125 1

If the bad prediction are far from the good ones,
we can set a threshold to signal : “The model is
et not sure of its prediction”

Incorrect

Densite
=
o
o

0.5 0.6 0.7 0.8 0.9 1.0 22
Probabilité prédite

Transfer Learning H

5) Analysis

D)_Probabilites repartition :

The probabilites repartition aren’t always the same for each model, depending on the
number of epochs, the learning rate...

Probabilités : bonnes vs mauvaises prédictions Probabilités : bonnes vs mauvaises prédictions Probabilités : bonnes vs mauvaises prédictions
- I I
200 I Correct E Correct
! : Incorrect I Incorrect
_ 1
175 I 50 1! 501 |
I
1501 1 |
! 40| a0 i
1
1254 |
= I = '
€ 1004 | e 30!
754 | 204!
11
I
I
509 1
101 |
251 | Correct |
I I
Incorrect
0 l‘ T T T T = A 0 Jl'l L T L] 1 T T T T T T T
0.5 0.6 0.7 0.8 0.9 1\ 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
Probabilité predite Probabilité predite (classe 1) Probabilité prédite (classe 1)

Easy to set a thershold Hard to set a thr Easy to set a thershold,

different repartition

(We ignore this error) 23

Transfer Learning

6) Final models

After all those experiences, | kept 3 models that combined good score on all the indicators.

Here are the parameters :
explained earlier

e jeu de données : dataset_2.pkl —

e split:50/20/30
e augmentation : horizontal flip + rotation 90°

e normalisation : locale (img /snr_max(img))

e batchsize: 16 train

e Utilisation du snr max en entrée : oui dataset

e Utilisation du snr std en entrée : oui 1

e fine tuning : oui batch

e epochs:30/200/200 |

e loss: CrossEntropyLoss

e scheduler: oui-> Ir_scheduler.ReduceLROnPlateau

optimiseur : Adam

learning rate fc 1-6 &4 _, Modell 2 3
learning rate layer¥ N 1e-6\/ 1e-4y, —

24

Transfer Learning

6) Final models

e augmentation : horizontal flip + rotation 90°

e normalisation : locale (img /snr_max(img))
 Utilisation du snr max en entrée : oui

e Utilisation du snr std en entrée : oui

e fine tuning : oui

e loss: CrossEntropyLoss

e scheduler: oui-> Ir_scheduler.ReduceLRONPlateau
e optimiseur: Adam

e learningrate fc:1e-4 /1e-6 / 1e-4

e learning rate layer4:1e-5/1e-6 / 1e-4

Data Augmentation

e Goal: prevent overfitting by artificially
Increasing the amount of data

e The choice of which operation we do to
our images is crucial. We must keep
the physics sense behind the
operation.

e Here, the augmentation is made in pre-
processing. But it is possible to make it
randomly during training, and that
considerably increase the total number
of different images (a bit harder to do)

25

Transfer Learning Normalisation H

6) Final models e Godl: help the model to learn easier

e jeu de données : dataset_2.pkl

e split : 50/20/30 e The principle of “learning” is based on gradient. If

« augmentation : horizontal flip + rotation 90° the data is too “wide” (high values in an image and
« normalisation : locale (img /snr_max(img)) low values on another), the gradients will be

unstable, it becomes hard to optimize.

e Utilisation du snr max en entrée : oui

e Utilisation du snr std en entrée : oui

e The choice of normalisation depends on the data :
e fine tuning : oui

= No normalisation ?
e epochs:30/200/200

= Global normalisation ? (max of the dataset)
e loss: CrossEntropyLoss

. . - .
e scheduler: oui-> Ir_scheduler.ReduceLRONPlateau = Local normalisation : (max of the |mage)

e optimiseur : Adam op e
PHIT Additional data
e learningrate fc:1e-4 /1e-6 / 1e-4
e learning rate layer4:1e-5/1e-6 / 1e-4
e To compensate the fact that we used local
normalisation, we give to the model the max snr

and the standard deviation of the snr 26

Transfer Learning

6) Final models

Fine tuning

e Goal: help the model to adapt even better to our
dataset
Remember the CNN idea ?

jeu de données : dataset_2.pkl
split: 50/20/30
augmentation : horizontal flip + rotation 90°

normalisation : locale (img / snr_max(img))
batch size: 16
Utilisation du snr max en entrée : oui

e epochs:30/200/200

e loss: CrossEntropyLoss

I //A Bo
\\\ \'lll;A\‘ '/
A AN A
ﬁ‘v //‘\\wi,'lo. t‘{‘\ "lz .ﬁ““" | » ‘\"'5
\’.‘? /> \‘# q" @ ‘:‘:; ;?f*. /..\““ é""; “‘\. l"/
/ \ ’i" i":=¢“=‘ ‘1 ll' yv“. .
'I‘v " "\ ‘#0::- “v q.',JI W ‘t‘ .‘:' A

q AV 0 1"%}:“ AN '_‘."
‘ ' }"?\ ‘\o?f:,:q.“:\:x}'% ;&'// 51:“:\
® 4\ \ //lif%:\\ / OO
‘ o\ o 28\ o 7 S\
k«/’\\V/"‘\V// Y

Inputs Outputs

e scheduler: oui-> Ir_scheduler.ReduceLRONPlateau

e optimiseur: Adam
e learningrate fc:1e-4 /1e-6 / 1e-4

learning rate layer4 : 1e-5/1e-6 / 1e-4

— \

Convolutional layers

Classification layer

27

Transfer Learning Fine tuning Q

6) Final models

e Goal: help the model to adapt even better to our
jeu de données : dataset_2.pkl dataset

split: 50/20/30 Remember the CNN idea ?
augmentation : horizontal flip + rotation 90° T

We unfreeze a layer

normalisation : locale (img / snr_max(img))
batch size: 16
Utilisation du snr max en entrée : oui

e fine tuning : oui

\ '

\\ v
o\ ‘ & /\‘
% /A\“" oo "‘”A\"

S8 e iy 0“? Ny '4’0\‘*“' oS0
Inputs :?#.v. »,/ \\,ﬁ'm . 4‘ "% % \‘v }ﬁ». Outputs

e epochs:30/200/200 K Q.J:*%‘é' ;‘ ‘0 X 'Q,%:‘;'\\ /'ﬁ- &'

AR ’,'a K 4\‘» /’0; :5 \ 2»‘\ «,h ,t
e loss : CrossEntropyLoss 5‘] ’\\'},ﬁ,« ,;\{0/"%‘?\ w‘..,‘:,&;‘\ !/{r 0

- I,)' A .

e scheduler: oui-> Ir_scheduler.ReduceLRONPlateau k"" \ /,;,‘ t‘\\“\ “‘ //
e optimiseur : Adam \\\' V//’
e learningrate fc:1e-4 /1e-6 / 1e-4
e learning rate layer4:1e-5/1e-6 / 1e-4 N o

Frozen layers “Free” layers

28

Transfer Learning

6) Final models

Fine tuning

e Goal: help the model to adapt even better to our
jeu de données : dataset_2.pkl dataset

SpIE:50/20/30 Remember the CNN idea ? ..
augmentation : horizontal flip + rotation 90°

normalisation : locale (img / snr_max(img))
batch size: 16
Utilisation du snr max en entrée : oui

(// ’/.b

oy
M A"t{\» ’/ \» r7‘\"""'

: | & 4'h ‘\J 4 v"fj \ ‘V
.“ : \}‘v \\ v ‘ ‘ { ’\
e fine tuning : oui :’ X ~Y *"fo» .\w“mh .\ “"1: A t“’g‘//
InPUtS .6"',% i./ \\o‘:"ffr'w‘ ’Q rm#ﬁ 3’ \‘ ‘%'"“5 Outputs
e epochs:30/200/200 w‘g \ "4:..

*"0 " S VW
; (" Q % f\‘
w*w " o "/ 1003 @ 00

:), 0t \

e loss: CrossEntropyLoss 0-;) ,',A..\ o., ‘;‘, 20 lﬁ@ \ M %i@

_ //' \-an 1‘1\ /MQ. 0 Vlb‘\\

 scheduler: oui-> Ir_scheduler.ReduceLRONPlateau < \‘ /)‘. N ‘e @ \' 75N
\\v’"" vt

e optimiseur: Adam
learning rate fc: 1e-4 / 1e-6 / 1e-4

learning rate layer4 : 1e-5/1e-6 / 1e-4 k—v—)/ \
Frozen layers

Fully-connected layer
(classification layer) 29

Transfer Learning Loss g

e Goal: calculate the error on predictions

6) Final models L .
e Crosskntropy for classification, MSE for regression

e jeu de données : dataset_2.pkl

split : 50/20/30 Scheduler
augmentation : horizontal flip + rotation 90° e Goal: adapt the learning rate to help the learning
normalisation : locale (img / snr_max(img)) ¢ Several methods:
batch size : 16 = StepScheduler — lower the learning rate every
3titisation :U snr mzx en entrée : oui X epochs

tilisation du snr std en entrée : oui :
fine tuning : oui = ReducelROnPlateau — lower the learning rate
epochs : 30 /200 / 200 when the validation loss doesn't lower

loss : CrossEntropylLoss
scheduler : oui -> Ir_scheduler.ReduceLROnPliteau Optimizer

optimiseur : Adam e Goal:it's what truly make the weights update
learning rate fc: 1e-4 / 1e-6 / 1e-4 e Severdl possibilities .
learning rate layer4 : 1e-5/1e-6 / 1e-4 » SDG (Stochastic Gradient Descent)

= Adam

= AdamW (Adam + Weight Decay) 30

Transfer Learning

6) Final results : ResNet 18

e 18 layers
e 11 millions of parameters
e 4 “residual blocks" :
= 2 convolutional layers
= |1 batch normalization layer
= | RelU
e Revolutionary in Deep Learning:
= allows to increase dramatically the number of
layers without losing accuracy (“vanishing
gradient problem”)
= use of “skip connections” that allows the gradient
to take a short cut and not vanishing (that
prevents wieght adjustment)

Image

.

Tx7 conv,64,/2

v

max pool, /2
|

h 4

3x3 cqnv, 64
v

IX3 cqnv, 64

h

3x3 cgnv, 64

b 4
3x3 cdnv, 64

v

J3x3 conv, 128, /2

¥

3X3 conv, 128

h

Ix3 copwv, 128
h

3x3 cohv, 128

Y

Ix3 cony, 256, /2

3x3 copv. 256

3X3 copv, 256

Y
3xX3 c:ol'w, 256

h

Ix3 cony, 512, 12

¥

3x3 cohv, 512

3X3 cophv, 512

3x3 cohv, 512

\ }" | \ 1 J

\ | l

ke } o .
= - -

v

Avera%e FPool

FC, 10

3

Transfer Learning

6) Final results : ResNet 18

val_loss

val_acc

Validation loss [accuracy

0.7 1 —— resnet18_with_SNRmax_SNRstd_finetune
\ — resnetl8_full_200ep_le-6
St ‘-.1 —— resnet18_full_200ep_le-4_le-5
\
\
LY
0.5 - C
%
N\
0.4 - \'\
\R\\
-\\\
0.3 -
0.2 1
1
0 25 50 75 100 125 150 175 200
Epoch
100 -
95 I,FI' /
nf
2l
90 M
J P, Y
II
85 - :
|
80 - r
|
|
75 1 |
70 1 |
65 —— resnetl8_with_SNRmax_SNRstd_finetune
—— resnetl8_full_200ep_le-6
60 4 —— resnetl8 full 200ep _le-4 le-5
0 25 50 75 100 125 150 175 200

Epoch

Gap between train and
validation accuracy

Train acc - Val acc

Train acc - Val acc

Train acc - Val acc

Generalization gap - ResNet18 - full - 30 epochs - Ir = 1e-4

T T T T T T T
0 5 10 15 20 25 30
Epoch

Generalization gap - ResNet18 - full - 200 epochs - Ir = 1e-6

I
un
L

|
-
=]
L

_15 -

T T L] T Ll T L} L] L]
0 25 50 75 100 125 150 175 200
Epoch

Generalization gap - ResNet18 - full - 200 epochs - Ir = 1e-4/1e-5

301 s

25 1

]
(=]

e
w
|

[
o

32

Transfer Learning

6) Final results : ResNet 18

30 epochs - Ir = le-4 200 epochs - Ir = Te-6 200 epochs - Ir = 1e-4/le-5

Probabilités : bonnes vs mauvaises prédictions Probabilités : bonnes vs mauvaises prédictions "y - T
| . : - Probabilités : bonnes vs mauvaises pre.dlctlons
: B Correct . : B Correct 2001 |
| u I
1751 | Incorrect : : Incorrect |
: . 50 1 ! 1751 |
I . I 1
150 { ! : ! |
\ . : 150 4 i
I - 401 1 :
125 1 | . : i
i . | 1251 |
2100 | : % % : p |
1 I [] w | h—1
g : . 2 ! £ 1004 |
| E i 5 :
?5 7 | n : 75 - I
| : 201 : :
|] I n
. | : | | []
SN : : 01 | :
I " i : -
- . 107 | .
: E : 251 | B Correct -
| :J : . I : Incorrect .
0-+—4 . . . -y — 0 14 1 TN NN 0l . : —— 2. 2oy aodll
0.5 0.6 07 08 0.9 L0 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
Probabilité predite (classe 1) Probabilité prédite (classe 1) Probabilité prédite

Probabilities repartition

33

What's next ? E

Real case use ?

A function that takes VHF images as input (and additional data such as maximum snr,
standard deviation...) and that gives as outputs :

e a prediction (true or false alert)

e the confidence on its prediction (probability)

e if the probability is below a certain threshold, indicate that the decision is unclear

More in details, we could use severadl models that have different learning parameters, good
performance but different probabilities repartition.
By crossing different sources, we can make sure that we don’'t miss some particular cases.

One goal in the remaing weeks is to integrate the trained model at the FSC (French Science
Center) in the iFSCtools. On reception of Sub-Image, give the confidence (0-100%) for True or
False Alert (or Unsure: if below x% e.g. 80%).

fsc

SVOM FR Science Center 34

What's next ? E

Training a new model knowing when there is another source ?

Right now the model doesn’t know particularly when another source is on the subimage, it is
something that could be intersting to implement, to tell the model where the other source is
located in the subimage.

35

What's next ? Q

Autoencoders ?
Input data Encoder (CNN) ‘=, Decoder (CNN) Reconstructed output

Latent space

Particular type of neural network for unsupervised learning, very efficient for anomaly detection
2 parts::
e The encoder that compress the input data in a latent space

e The decoder that tries to reproduce the input using the data in the latent space

When trained, the decoder poorly reconstruct the input if the input is an anomaly 36

istening

Thanks for li

37

An nexes https://forge.in2p3.fr/projects/etog-validation/wiki/Basic_TriggerVerdict

Weird error

True: O | Pred: 1

The verdict (in the Etog-Validation) is : false alert
(verification on Mattermost channels, same verdict)

But with the naked eye, it looks like a real trigger.
Considering that the model only have this image as
information (with the maximum value of the image and
the standard deviation), it can’t predict a false trigger.

38

https://forge.in2p3.fr/projects/etog-validation/wiki/Basic_TriggerVerdict

Annhexes

CrosskEntropy Loss

Pour une classe vraie y € {0, 1} et prediction p:

Loss = —|ylog(p) + (1 — y) log(1 — p)]

This loss calculation punishes the error, and takes into account the confidence that the
model had in its prediction.

39

Annhexes

Weight Decay

We punish the weights proportionnaly to the square of their value.
That prevents some weights to become too high for no reason, and at the same time
prevent overfitting.

40

Annhexes

RelLU activation

Rectified Linear Unit

RelLU(x) = max(0, z)

Allows to introduce non-linearities to the model

41

Annexes E

Batch Normalization layer

BatchNorm layer normalize slightly the intermediate activations by using maximum and
standard deviation from the batch of data considered
This allows to:

e use bigger learning rates

e introduce a little bit of noise in the data — help to generalize

42

