
Machine Learning for
gamma-ray burst images

classification

B. Hubert, CEA (Irfu/DAp) 09/02/2026, Saclay, In The Art
S. Schanne, CEA (Irfu/DAp) 1

SVOM Mission / ECLAIRs
Satellite launched in June 2024, French-Chinese
collaboration between CNSA+CNES (+CEA+CNRS)
Dedicated to Gamma-Ray Burst (GRB) studies
(formation of black holes in distant Universe)

Multiple instrumets Onboard : ECLAIRs,
VT, MXT, GRM... To analyze GRBs in
different parts of the spectrum
ECLAIRs + Onboard trigger : detection
of new transient gamma-ray source,
localization in the field of view (FoV 2 sr),
repointing spacecraft in 2 min for
follow-up (Visible & X-rays)

Representation of a gamma ray burst

Different instruments on SVOM Satellite

2

SVOM Mission / ECLAIRs trigger
Some statistics about ECLAIRs trigger up Nov 2025 :

72 GRBs detected
379 Known Gamma-ray sources (238 in onboard CAT, 141 not in CAT)
380 false alerts
848 triggers (682 VHF SubImages from IMT, 166 VHF Shadowgrams from CRT)

There are 2 independent trigger algorithms running onboard ECLAIRs:
CRT: searches for count-rate increase on timewindows from 10 ms to 20.48 s duration,
then imaging best timewindow found (max 1 image every 2.56 s), search excess

 => GRB Alert sequence with VHF Shadowgram => not used in this work
IMT: produces sky images every 20.48 s (on 4 energy bands), stacks the images to reach
timewindows from 20.48s to 22 min, search best excess not in onboard source CAT

 => GRB Alert sequence with VHF Sub-Image => studied in this work

3

What happens for real onboard ?

The onboard trigger calculates SNR images of
the sky (200x200 pixels) every few seconds.

On this image, differents values are calculated :
maximum value, standard deviation, difference
between maximum and second maximum...

Those values go through different filters/
thresholds, and triggers an alert sequence sent
to the ground over the VHF network.
A sub image (56x56 pixels) is sent at the end of
this alert sequence (for a trigger by IMT).

SVOM Mission / ECLAIRs

4

When an alert sequence is sent:
Subimage to the ground
Automatic request for a slew (repointing of the satellite)

On ground a person, the “Burst Advocate” on shift, has to decide:
was it a True GRB ? => organize ground follow-up with visible telescopes,
space follow-up with other satellites (Swift and Einstein Probe)
was it a False Alert ? => cancel the SVOM repointing, invalidate follow-up
started

After ~1.5 year of operations: about 75 True GRBs + hundreds known sources +
hundreds False Alerts => huge work for Burst Advocates

Automatic classification ? Machine Learning algorithms applied to sub-images to help
decision making

SVOM Mission / ECLAIRs

Swift Telescope

Einstein probe Telescope

5

What is the goal ? What are the main difficulties ?
To summarize the goal : Help the decision making for a GRB alert

Basically : Computer Vision → a subfield of AI that equips machines with the ability to
process, analyze and interpret images (or videos).

Not so basic in our case, why ? Our database :
540 images (true and false triggers combined)
incomplete images (not 56x56)
unclear cases (where even the human can’t really decide wether it is a true GRB or not)

Incomplete images Unclear decision Earth appearing Incomplete + unclear
6

What is the goal ? What are the main difficulties ?
Main problem with our small database :

overfitting : when the model is very efficient on the training set but not on the test set.
The model learns by heart images and can’t adapt.

Main problem with incomplete images :
Convolutional Neural Networks (CNN) require as inputs a fixed size. How can we fill the
images without disturbing the model ?

Main problem with unclear cases :
If even humans hesitate on the decision for a subimage, with lots of additional data,
how can a CNN predict easily on those unclear cases ? (spoiler, it can’t)

Multiple solutions :
Transfer learning → use a pre-trained model to prevent overfitting
Data augmentation → increase artificially the dataset to prevent overfitting
Mask associated with a subimage → fill the incomplete images without disturbing the model

7

What solutions do we consider ?
We considered multiple solutions :
1) Hand made model, trained from scratch
2) Hand made model, trained from scratch, with a mask associated with each subimage
3) Transfer learning
[4) Autoencoders (did not have time to implement it yet)]
[5) IsolationForest (new idea)]

“0” for what the model should not take into account
(missing part of a sub-image, FOV edges) → red

“1” for the background (useful data) → green

“2” for known sources → orange

“3” for the pixel that triggered the alert → blue

Mask concept :

8

Here are the outcomes of basic tests/studies/researchs to identify the best solution :

Filling the images with “0” is enough, the additional mask does not help a lot, since
the model identify on his own which data is useful
Indicating the triggered pixel (value “3”) is not useful, since the sub-image is always
centered on the triggered pixel
Training a model from scratch has lots of defaults :

A lot of parameters possible (number of layers, number of parameters, what
type of layers...) → I do not have the expertise to do so
The performance is poor compared to transfer learning

Transfer Learning is the most promising (and environment friendly)

What solutions do we consider ?

Combined with other methods (Data Augmentation...) → we can avoid overfitting and
have good performance

9

Transfer Learning
1) What is transfer learning ?

The concept of Transfer Learning is to use a model trained on millions of generic
images (typically ImageNet set of images) and to adapt it to our dataset
Here is the general idea for a CNN :

Inputs Outputs

Classification layer
Convolutional layers

Convolutional layers
are responsible for
the patterns and
strcutures
recognition

10

Transfer Learning
1) What is transfer learning ?

Inputs Outputs

Classification layerConvolutional layers

During training on our dataset :

Only the wieghts and biases of the classification layer will update during training 11

Split train/validation/test : (not specific to transfer learning) we split our full dataset into 3
The choice I made is a 50/20/30 repartition :
We need a big amount of data to train but we are going to do data augmentation on it so 50% is ok
Validation set is just to follow if our model is really learning something
Test set is here to evaluate our model at the end (can’t be too small otherwise it’s not representative)

We prepare our data to the pre-trained model :
Resize from 56x56 to 224x224
Normalisation
Data augmentation (not necessary generally speaking)
Transformation into tensors (typical inputs for a model)

We divide our train dataset into batches of a certain size (eg batch size of 50 for 200 images is 4
batches)

We load the pre-trained model, and we start the training part on our dataset

Transfer Learning
2) How to implement Transfer Learning ?

12

What parameters can we play on ?
split (50/20/30 ou 70/15/15 ou ...)
data augmentation
normalisation : global ? local ? others ?
batch size
number of epochs
loss calculation choice
scheduler choice
optimizer choice
learning rate
which data (with each subimage)
fine tuning on or off

Transfer Learning
3) How do we optimize model’s training

=> LOTS OF PARAMETERS : we need to find which value/choice is the best for each parameter
(we understand now why a hand made model is even more complex, because even more
parameters to adjust)

Our goal : have the best model
“best” = a model that predicts the right
decision every time

13

Transfer Learning
4) What happens during training ?

We consider 1 batch of images : (reminder, we divided our train dataset into batches)

We give this batch to the model
It tries to predict the good output
We calculate the loss (CrossEntropy, MSE...)

The model answers with what it knows
=

Forward pass

We calculate the loss gradient
It gives, layer by layer, how each weight
influences the decision

The model understands where it went wrong
=

Backward pass

We update the parameters (weights and
biases) of every neurons → depending of
the learning rate

The model updates its weights to reduce the error
(choice of the optimizer)

14

Transfer Learning
4) What happens during training ?

To summarize : for 1 batch → forward pass / backward pass / update of weights

Exemple : we have 500 images, and batches of 50 images, then we have 10 batches.
That means that we will have to do 10 times the forward/backward/update process

When the dataset have seen the 10 batches, we completed an epoch
To make it simple : an epoch is done when the model has seen all the images from the dataset

Now, we can repeat this multiple times (choice of the number of epochs)

We used our train dataset 15

Reminder, an epoch is done when the model has seen all the images from the train dataset

It doesn’t adjust its wheigts during validation

Transfer Learning
4) What happens during training ?

But what the validation set is for ?
→ At the end of each epoch, we “validate” the model

The model tries to generalize what he learnt from the training. We calculate different metrics,
to follow if the model is still learning or if it’s stuck somewhere.

Epochs

Ac
cu

ra
cy

16

Transfer Learning
5) What happens after training ?

When the training is complete, the model is fixed and won’t move anymore (as long as we
don’t train it again).
We can now test it on the test set, a set of images he has never seen before.

To summarize :

Training on the whole train setEpoch 1

Epoch 2 Training on the whole train set (different batches)

Validation on the validation set

Validation on the validation set

.........
Epoch 30 Training on the whole train set (different batches) Validation on the validation set

Final test on the test set
17

With that in mind, we now want to adjust every parameter possible to have the best model.
In order to do that, we need some indicators/values that help us make a decision :

A) Performance :
Accuracy (% of good predictions on the test set)
Precision (ratio between true positive and all positives)

B) Least overfit :
Train accuracy VS validation accuracy curve

C) Good stability :
Validation accuracy stable at the end ?

D) Probabilites repartition :
At what point the incorrect prediction are separated from the good ones

Transfer Learning
5) What happens after training ?

18

Transfer Learning

A) Performance : the simplest analysis (compare different values)

5) Analysis

Exemple :

It gives a good idea if a model performs well, but it is absolutely not enough to make a decision

19

Transfer Learning

B) Least overfit possible : we compare performance on the train set and on the validation set

5) Analysis

Well fitted model : small difference
between validation and training

cruve

VS

Overfitting model : train accuracy
above validation accuracy 20

Transfer Learning

C) Good stability : we want the validation accuracy curve to be stable at the end

5) Analysis

Good stability

VS

Bad stability

This stability depends a lot on the value of the learning rate and the presence of fine tuning

21

Transfer Learning

D) Probabilites repartition :

5) Analysis

At the end, we want a model that can predict with a lot of certainty if an alert is a true GRB or
a false alert.
BUT in the worst case, we prefer it says “I don’t know” than saying a verdict it’s not sure of.

Here are the probabilities the model calculated
before giving an answer (0 or 1, true or false)

In blue, the good prediction
In orange, the bad prediction

If the bad prediction are far from the good ones,
we can set a threshold to signal : “The model is
not sure of its prediction”

22

Easy to set a thershold

Transfer Learning

D) Probabilites repartition :

5) Analysis

The probabilites repartition aren’t always the same for each model, depending on the
number of epochs, the learning rate...

(We ignore this error)

Hard to set a threshold Easy to set a thershold,
different repartition

23

Transfer Learning
6) Final models
After all those experiences, I kept 3 models that combined good score on all the indicators.
Here are the parameters :

explained earlier

Model 1, 2, 3

24

train

Transfer Learning
6) Final models Data Augmentation

Goal : prevent overfitting by artificially
increasing the amount of data

The choice of which operation we do to
our images is crucial. We must keep
the physics sense behind the
operation.

Here, the augmentation is made in pre-
processing. But it is possible to make it
randomly during training, and that
considerably increase the total number
of different images (a bit harder to do)

25

Transfer Learning
6) Final models

Normalisation

Goal : help the model to learn easier

The principle of “learning” is based on gradient. If
the data is too “wide” (high values in an image and
low values on another), the gradients will be
unstable, it becomes hard to optimize.

The choice of normalisation depends on the data :
No normalisation ?
Global normalisation ? (max of the dataset)
Local normalisation ? (max of the image)

Additional data

To compensate the fact that we used local
normalisation, we give to the model the max snr
and the standard deviation of the snr 26

Transfer Learning
6) Final models

Fine tuning

Goal : help the model to adapt even better to our
dataset

Remember the CNN idea ?

OutputsInputs

Classification layerConvolutional layers

27

Transfer Learning
6) Final models

Fine tuning

Goal : help the model to adapt even better to our
dataset

Remember the CNN idea ? We unfreeze a layer

OutputsInputs

Frozen layers “Free” layers

28

Transfer Learning
6) Final models

Fine tuning

Goal : help the model to adapt even better to our
dataset

Remember the CNN idea ?

OutputsInputs

Frozen layers

“Layer4” Fully-connected layer
(classification layer) 29

Transfer Learning
6) Final models

Loss
Goal : calculate the error on predictions
CrossEntropy for classification, MSE for regression

Scheduler
Goal : adapt the learning rate to help the learning
Several methods :

StepScheduler → lower the learning rate every
X epochs
ReduceLROnPlateau → lower the learning rate
when the validation loss doesn’t lower

Optimizer
Goal : it’s what truly make the weights update
Several possibilities :

SDG (Stochastic Gradient Descent)
Adam
AdamW (Adam + Weight Decay) 30

Transfer Learning
6) Final results : ResNet 18

18 layers
11 millions of parameters
4 “residual blocks” :

2 convolutional layers
1 batch normalization layer
1 ReLU

Revolutionary in Deep Learning :
allows to increase dramatically the number of
layers without losing accuracy (“vanishing
gradient problem”)
use of “skip connections” that allows the gradient
to take a short cut and not vanishing (that
prevents wieght adjustment)

31

Transfer Learning
6) Final results : ResNet 18

Validation loss / accuracy

Gap between train and
validation accuracy

32

Transfer Learning
6) Final results : ResNet 18

Probabilities repartition

33

30 epochs - lr = 1e-4 200 epochs - lr = 1e-6 200 epochs - lr = 1e-4/1e-5

A function that takes VHF images as input (and additional data such as maximum snr,
standard deviation...) and that gives as outputs :

a prediction (true or false alert)
the confidence on its prediction (probability)
if the probability is below a certain threshold, indicate that the decision is unclear

More in details, we could use several models that have different learning parameters, good
performance but different probabilities repartition.
By crossing different sources, we can make sure that we don’t miss some particular cases.

One goal in the remaing weeks is to integrate the trained model at the FSC (French Science
Center) in the iFSCtools. On reception of Sub-Image, give the confidence (0-100%) for True or
False Alert (or Unsure: if below x% e.g. 80%).

What’s next ?
Real case use ?

34

What’s next ?
Training a new model knowing when there is another source ?

Right now the model doesn’t know particularly when another source is on the subimage, it is
something that could be intersting to implement, to tell the model where the other source is
located in the subimage.

35

What’s next ?
Autoencoders ?

Input data Encoder (CNN) Reconstructed outputDecoder (CNN)

Latent space
Particular type of neural network for unsupervised learning, very efficient for anomaly detection
2 parts :

The encoder that compress the input data in a latent space
The decoder that tries to reproduce the input using the data in the latent space

When trained, the decoder poorly reconstruct the input if the input is an anomaly 36

Thanks for listening !

37

Annexes
Weird error

The verdict (in the Etog-Validation) is : false alert
(verification on Mattermost channels, same verdict)

But with the naked eye, it looks like a real trigger.
Considering that the model only have this image as
information (with the maximum value of the image and
the standard deviation), it can’t predict a false trigger.

https://forge.in2p3.fr/projects/etog-validation/wiki/Basic_TriggerVerdict

38

https://forge.in2p3.fr/projects/etog-validation/wiki/Basic_TriggerVerdict

Annexes
CrossEntropy Loss

This loss calculation punishes the error, and takes into account the confidence that the
model had in its prediction.

39

Annexes
Weight Decay

We punish the weights proportionnaly to the square of their value.
That prevents some weights to become too high for no reason, and at the same time
prevent overfitting.

40

Annexes
ReLU activation

Rectified Linear Unit

Allows to introduce non-linearities to the model

41

Annexes
Batch Normalization layer

BatchNorm layer normalize slightly the intermediate activations by using maximum and
standard deviation from the batch of data considered
This allows to :

use bigger learning rates
introduce a little bit of noise in the data → help to generalize

42

