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Overview

• Review of the main concepts and definitions in

Reservoir Computing and more specifically Echo State
Networks

• Review of some key mathematical properties that justify

a wide range of applications

• Perspective on the forthcoming developments
and applications of RC

• Some motivations for the choice of ESN as

ML tool for particle beam design
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Some motivation

• RC is starting to solve large scale, real life problems that

entail the simulation of an underlying large dynamical
system

• RC is not the only ML approach that can do so, but it

seems to be the cheapest and easiest to train
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(Artificial) Neural Networks

• At the beginning was the perceptron: built as physical
device in the 1950s, analyzed mathematically in the 1960s

• Example of network without hidden layers: unable to

approximate arbitrary input-output relationships

• Networks with one or more hidden layers were first

investigated systematically in the 1980s
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First basic mathematical property of NN

• Networks with at least one hidden layer have the universal
approximation property: they can approximate arbitrarily
well continuous and measurable functions

• This should not be overrated: also polynomials, Fourier
series, ..., wavelets (affine systems) have similar

properties!

(I. Daubechies also says so...) So what

is the difference?

....and more:
I. Daubechies et al 2022
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Feedforward vs Recurrent NN

• Feedforward neural networks are composed by neurons
linked by connections to other neurons only: no cycles

• Recurrent neural networks are composed by neurons
linked by connections to themselves and to other neurons:

cycles

• Feedforward neural networks provide only input-output
relationships: they are (complicated!) functions

• Recurrent neural networks (RNN) preserve an internal state
that is a nonlinear transform of the input signal: they

are dynamical systems

• Major difficulties arise when training recurrent networks

using standard gradient based approaches...

but Long Short
Term Memory networks can mitigate or solve this problem
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Reservoir computing

• Reservoir Computing (RC) (Jaeger, 2001 and Maass et al.
2002) uses a random recurrent network (the dynamical

reservoir) which holds a nonlinear transform of the input

(a.k.a. the echo)
• No backpropagation is necessary

• Training is performed only by (usually) linear regression
to compute weights used to project the reservoir state

onto the output state
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RC brands: LSM vs ESN

• Liquid State Machines (Maass): use more realistic neuron
models with complex spiking dynamics and biologically
motivated network connectivity

• Reservoir seen as a liquid whose ripples (excited neurons)

propagate information

• Echo System Networks (Jaeger): use simpler neuron models
with randomly generated network connectivity

• ESN found to be easier to implement and sufficient for

chaotic system prediction (Jaeger and Haas, 2004)...but

never say never...
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Some special RC features

• RC has super Turing computational capability (Siegelmann

1995), even with rational weights only

• RC approaches based on directed networks are universal
approximators of dynamical systems: Funahashi and

Nakamura 1993, Gonon and Ortega, 2020, Hart, Hook and
Dawes, 2020

• Physical RC devices are feasible, often with photonic
devices:

K. Nakajima, Physical reservoir computing|an

introductory perspective, Japanese Journal of Applied

Physics 59,060501, 2020

Van der Sande et al., Advances in photonic reservoir

computing, Nanophotonics, 6, 561--576, 2017
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Formal ESN definition in discrete time

xk+1 = f (Wxk +W inuk+1 +W fbxoutk )

xoutk+1 = g(W out [xk+1; uk+1])

• States xk ∈ RN internal state, uk ∈ RK input state, xoutk ∈ RL

output state, with N >> K , L, at each discrete time k ∈ Z
• Matrices: W ∈MN(R) internal weights (reservoir),

W in ∈MN×K (R) input, W fb ∈MN×L(R) feedback,
W out ∈ML×(N+K)(R) output

• Functions: f : RN → RN , componentwise sigmoid,
g : RL → RL, componentwise sigmoid or identity

L. Bonaventura Echo State Networks 12 / 19



Formal ESN definition in discrete time

xk+1 = f (Wxk +W inuk+1 +W fbxoutk )

xoutk+1 = g(W out [xk+1; uk+1])

• States xk ∈ RN internal state, uk ∈ RK input state, xoutk ∈ RL

output state, with N >> K , L, at each discrete time k ∈ Z

• Matrices: W ∈MN(R) internal weights (reservoir),

W in ∈MN×K (R) input, W fb ∈MN×L(R) feedback,
W out ∈ML×(N+K)(R) output

• Functions: f : RN → RN , componentwise sigmoid,
g : RL → RL, componentwise sigmoid or identity

L. Bonaventura Echo State Networks 12 / 19



Formal ESN definition in discrete time

xk+1 = f (Wxk +W inuk+1 +W fbxoutk )

xoutk+1 = g(W out [xk+1; uk+1])

• States xk ∈ RN internal state, uk ∈ RK input state, xoutk ∈ RL

output state, with N >> K , L, at each discrete time k ∈ Z
• Matrices: W ∈MN(R) internal weights (reservoir),

W in ∈MN×K (R) input, W fb ∈MN×L(R) feedback,
W out ∈ML×(N+K)(R) output

• Functions: f : RN → RN , componentwise sigmoid,
g : RL → RL, componentwise sigmoid or identity

L. Bonaventura Echo State Networks 12 / 19



Formal ESN definition in discrete time

xk+1 = f (Wxk +W inuk+1 +W fbxoutk )

xoutk+1 = g(W out [xk+1; uk+1])

• States xk ∈ RN internal state, uk ∈ RK input state, xoutk ∈ RL

output state, with N >> K , L, at each discrete time k ∈ Z
• Matrices: W ∈MN(R) internal weights (reservoir),

W in ∈MN×K (R) input, W fb ∈MN×L(R) feedback,
W out ∈ML×(N+K)(R) output

• Functions: f : RN → RN , componentwise sigmoid,
g : RL → RL, componentwise sigmoid or identity

L. Bonaventura Echo State Networks 12 / 19



Echo state property (ESP)

• For networks without feedback W fb = 0 one has

xk+1 = f (Wxk +W inuk+1) = F (xk , uk+1)

• For standard sigmoid functions and inputs, xk , uk belong

to limited, compact sets

• An infinite sequence of states yk k ≤ 0 is compatible
with a given input sequence uk k ≤ 0 if

yk = F (yk−1, uk) ∀k ≤ 0

• ESP: Given a network such that xk , uk belong to compact

sets, it has the Echo State Property wrt the input

sequence uk k ≤ 0 if all sequences compatible with
uk k ≤ 0 coincide

• ESP guarantees that the ESN future evolution is

uniquely determined by the input
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uniquely determined by the input
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Sufficient conditions for ESP

• Original proposal by Jaeger: maxσ(W ) < 1, where σ(W )
denote singular values, found to be overly restrictive

• Common sufficient condition: ρ(W ) < 1, where ρ(W )
denotes spectral radius (maxσ(W ) 6= ρ(W ) for non
symmetric matrices)

• More subtle and complex conditions on the internal weight
matrix, discussed in Yildiz, Jaeger and Kiebel, 2012

• In practice, entries of W are rescaled with maximum
eigenvalue to guarantee ESP
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Other important possible features

• Leaky neurons: introduce parameter a ∈ [0, 1] and define

xk+1 = (1− a)xk + af (Wxk +W inuk+1)

Corresponds to low pass filtering of the response to the

input: smaller a implies slower reservoir response

• Continuous time (leaky) ESN:

x ′(t) = f (Wx(t) +W inu(t))− Dx(t)

xout(t) = g(W out [x(t); u(t)])

where D ∈MN(R) is a diagonal matrix such that di ,i = 1/τi
and τi are the time scales for each neuron

• Combine multiple reservoirs with different time scales:

Long Short Term Memory (LSTM)
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Validation of ESN output

• ESN validation has only recently begun to draw attention:

in earlier studies, fixing the reservoir was considered

acceptable...
• ...but recently a statistical, ensemble approach is

increasingly common:

P.L. McDermott, C.K. Wikle, An ensemble quadratic echo

state network for nonlinear spatio-temporal

forecasting, STAT, 6, 315-330, 2017
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Next generation RC?

• RC with nonlinear readout is strictly related to non linear
vector autoregression...

so some people say: scrap the
random network reservoir and get equivalent quality, but

cheaper universal approximator for dynamical systems

D.J. Gauthier, E. Bollt et al. Next generation

reservoir computing, Nature Communications, 12, 5564,

2021
• Personal view on this: they may be right, but

uncertainties are everywhere and the practical value of

purely deterministic forecasts is limited
• Having a naturally and trivially parallellizable approach to

predict probability distributions of quantities of interest

does not seem such a bad idea
• Furthermore, scrapping the network may imply also

losing all the super-approximation properties: do we

really want that?
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The future is hybrid

• Use RC (and, more generally, ANN) predictions to

complement and integrate more conventional, equation

based models

• No need to waste time learning what you already know

• Possible bottom line: classical approximation methods

(polynomials etc.) do it better for smooth
functions/larger scales, while data based methods for

irregular functions/fine, turbulent scales
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What are we doing with RC?

ML emulation of particle beam evolution in particle
accelerators, such as the Large Hadron Collider
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What are we doing with RC?

Particle beam modelling mostly relies on simulation of a

small Hamiltonian system, whose trajectories must be

simulated for a very long time: O(109) turns or more: direct

simulation is expensive
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What are we doing with RC?

An approach based on a combination of cheaper emulators and

asymptotic scaling laws looks promising (see next talk!)
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