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GOAL
Predicting the Dynamic Aperture (DA) for large number of turns  𝑁 (107 turns) 
using  an Echo State Network (ESN)

Region of stable motion of a particle after a certain number of turns in a circular 
accelerator.

What is DA?

Why do we need DA ?
In colliders, the possible sources of unstable motion are magnetic fields and elements 
placement imperfection -> reduction of the region of stable motion

DA is used to define tolerance on magnetic field quality and non linear correction 
schemes
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Difficulties
Estimating DA for large number of turns is very computationally time consuming

Why ESN

- 0) Using Analytical models (SL)
- 1) Using ESN
- 2) Combining analytical models and ESN (SL-ESN)

Solutions

Computationally more efficient than the others standards NNs and proved to be
an universal approximant for dynamical systems
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where 𝑟 𝛼, 𝑁 denotes the last value of 𝑟 whose orbit is bounded after 𝑁 turns

DA = 0׬
𝜋/2

𝑟 𝑎, 𝑁 𝑑𝑎

𝑟𝑐𝑜𝑠(𝑎)

𝑟𝑠
𝑖𝑛
(𝑎

)
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DA evaluated until 105 turns 𝑁 from a
realistic model of the High Luminosity
LHC using SixTrack simulations

60 seed corresponding to a different
machine configuration (different
randomly distributed magnetic field error)

Stepwise function



5

𝑥1
(𝑛+1)

𝑝𝑥1
(𝑛+1)

𝑥2
(𝑛+1)

𝑝𝑥2
(𝑛+1)

= L

𝑥1
(𝑛)

𝑝𝑥1
(𝑛)

+ 𝑥1
𝑛

2
− 𝑥2

𝑛
2
+ 𝜇 𝑥1

𝑛
3
− 3 𝑥2

𝑛
2
𝑥1

𝑛

𝑥2
(𝑛)

𝑝𝑥2
(𝑛+1)

− 2𝑥1
(𝑛)
𝑥2
(𝑛)

+ 𝜇 𝑥2
𝑛

3
− 3 𝑥1

𝑛
2
𝑥2

𝑛

Model the effects of a 
sextupole and octupole

The 4D Hénon Map is a simplified model allowing to study the DA evolution to a larger 
number of turns than the one obtained using the realistic model of the HL-HLC
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L =
𝑅(𝑤𝑥1

(𝑛)
) 0

0 𝑅(𝑤𝑥2
(𝑛)
)

, 𝑅 2D rotations

The linear frequencies 𝑤𝑥1
(𝑛)

and 𝑤𝑥2
(𝑛)

vary such that

𝑤𝑥𝑖
(𝑛)

= 𝑤𝑥𝑖0 1 + 𝜀 ෍

𝑘=1

𝑚

𝜀𝑘 cos Ω𝑘𝑛 , i = 1,2

where 𝜀 denotes the tune modulation
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DA evaluated until 107 turns 𝑁

12 cases (different 𝜀 & 𝜇 = 0)

𝜀 = 5. 10−4

𝜀 = 60. 10−4
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Analytical model based on the Nekhoroshev theorem used to extrapolate the DA

What is it ?

Scaling Law 𝐷𝐴𝑆𝐿 = 𝜌∗
𝜅

2𝑒

1

ln(𝑁)𝜅

Two fitting parameters 𝜅 and 𝜌∗

How to perform the fit ?

Using the least square method

It provides an estimate for the number of turns 𝑁 𝑟 for which the orbit of an initial 
condition of amplitude 𝑟 remains bounded
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We recall the discrete time dynamic of the leaky ESN using the Euler explicit method with
𝑇 time steps of size Δ𝑡:

𝑥𝑘+1 = (1 − 𝑎
Δ𝑡

𝑐
) 𝑥𝑘 +

Δ𝑡

𝑐
𝑓 𝑊𝑖𝑛𝑢𝑘 +𝑊𝑥𝑘

𝑥𝑘
𝑜𝑢𝑡 = 𝑔(𝑊𝑜𝑢𝑡[𝑥𝑘+1, 𝑢𝑘])

where 𝑎 denotes the leaking rate, 𝑐 a global time constant, 𝑓 a sigmoid function, 𝑔 the 
output activation function, 𝑊𝑖𝑛 the input weight matrix, 𝑊 the reservoir matrix,𝑊𝑜𝑢𝑡

the output weight matrix, 𝑢 the ESN input and 𝑥𝑜𝑢𝑡 the ESN output

𝑊𝑖𝑛 and 𝑊 are randomly initialized
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𝑊𝑖𝑛

𝑢𝑘

𝑊
𝑊𝑜𝑢𝑡

𝑥𝑘
𝑜𝑢𝑡

𝑥𝑘
𝑡𝑎𝑟𝑔𝑒𝑡

E

Training 𝑊𝑜𝑢𝑡 is the only trained matrix using Ridge regression with 𝛽 regularization

𝑊𝑜𝑢𝑡 = 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 𝑋𝑇(𝑋𝑋𝑇 + 𝛽𝐼)

where 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 contains the training data 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑋 the concatenation of the ESN input 
𝑢 and internal state 𝑥

𝑋 =
𝑢0

𝑥1

𝑢𝑇−1

𝑥𝑇
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Fixed Hyperparameters
Reservoir size 𝑁𝑟 = 50
Burn-in BI = 0
Leaking rate 𝑎 = 0.01
Spectral radius  ρ = 0.99 (satisfy the ESP)
Sparisty 𝑠 = 0 (matrices full dense)

-> The regularization parameter 𝛽 is the only FREE hyperparameter found by the
validation process for each input

Validation data

ESN : uses the DA data direclty from the HL-LHC and Henon map models

SL-ESN : uses the data obtained by fitting the scaling law SL
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Training data

Validation data

Test data

Compute 𝑊𝑜𝑢𝑡

Tune only the 𝛽 hyperparameter (the others are fixed acording
previous studies)

Evaluate the model for new data

Train + Validation : [10, 5.104] turns

HL-LHC 4D Hénon Map

Test : [5.104, 1.105] turns

Train + Validation : [10, 5.104] turns

Test : [5.104, 1.107] turns
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GOAL
Find the best 𝛽 which minimize the MSE in the Validation set

Step 1
Generate randomly 𝑁𝑤 = 30 different pair of input and reservoir weight matrices (𝑊𝑖𝑛, 𝑊) 

(𝑊𝑖𝑛,𝑊)1 (𝑊𝑖𝑛,𝑊)2 (𝑊𝑖𝑛,𝑊)30

Step 2
Generate a list of 𝛽 of size  𝑁𝛽 of different values of 𝛽

𝛽 = 𝛽1, … , 𝛽𝑁𝛽
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Step 3
Compute the 𝑀𝑆𝐸𝑣𝑎𝑙 in the validation set for each 𝛽 and every pairs (𝑊𝑖𝑛, 𝑊)  

Step 4
For each 𝛽,  compute the mean of each rows of 𝑀

𝑚𝑚𝑒𝑎𝑛 = (𝑚𝑚𝑒𝑎𝑛
𝛽1

, 𝑚𝑚𝑒𝑎𝑛
𝛽2

, … , 𝑚𝑚𝑒𝑎𝑛
𝛽
𝑁𝛽

)𝑇

𝑀 =

𝑀𝑆𝐸(𝑊𝑖𝑛, 𝑊)1
𝑣𝑎𝑙,𝛽1

⋯ 𝑀𝑆𝐸(𝑊𝑖𝑛, 𝑊)30
𝑣𝑎𝑙,𝛽1

⋮ ⋱ ⋮

𝑀𝑆𝐸(𝑊𝑖𝑛, 𝑊)1
𝑣𝑎𝑙,𝛽

𝑁𝛽
⋯ 𝑀𝑆𝐸(𝑊𝑖𝑛, 𝑊)4

𝑣𝑎𝑙,𝛽
𝑁𝛽

Step 5
Choose the minimum of 𝑚𝑚𝑒𝑎𝑛 and select the corresponding 𝛽. If the minimum is at
the –ith row, then we will select 𝛽𝑖
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GOAL 
Given 𝛽𝑖 found in the validation method, evaluate the ESN in the Test set   

Step 1
Given 𝛽𝑖 , store the evaluated dynamic of the ESN  𝑥𝑜𝑢𝑡 for each pairs (𝑊𝑖𝑛, 𝑊) 

𝑥𝑜𝑢𝑡 = (𝑥1
𝑜𝑢𝑡 , 𝑥2

𝑜𝑢𝑡 , … , 𝑥30
𝑜𝑢𝑡)𝑇

Step 2
Take the mean 𝑥𝑚𝑒𝑎𝑛

𝑜𝑢𝑡 of 𝑥𝑜𝑢𝑡

Step 3
Compute standard deviation 𝜎 of 𝑥𝑚𝑒𝑎𝑛

𝑜𝑢𝑡
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The prediction given by the SL-ESN is in average
25% better

The predictions given by the ESN is in average
2% lower
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The predictions given by the SL-ESN is in
average 29% better

The predictions given by the ESN is in average
27% lower



0.206

0.214

0.214

0.212

𝜀 = 5. 10−4
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- The maximal prediction error is almost two times lower with SL-ESN than with SL

What Next ?

- How to compare scaling law with ESN
- Use ESN to produce at lower cost longer time series to be used to fit the scaling law
- Physics Informed ESN adding a non linear term in the cost function during training
- Studying the effects of the octupole for the 4D Hénon Map (𝜇 ≠ 0)
- Compare computational cost of sparse and full dense matrix

For the cases studied,

- In average the prediction given by SL-ESN is 25% better than with SL
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