g

Axion and ALP searches with NA62 and RADES

Babette Döbrich (CERN) based on work within the NA62 collaboration and the RADES team

Marseille, 24/08/18

Babette Döbrich (CERN) based on work wAxion and ALP searches with NA62 and RA

< ロ > < 同 > < 回 > < 回 >

э

The axion in popular culture...

the BiG BANG THEORY	Cosmology DARK MATTER Neuteron CR	
	PROTON DECAY AXIONS	

Sheldon looks for a new field of study... after BICEP 2 announcement The Relationship Diremption, Aired April 10, 2014

Why Axions? The strong CP problem!

- make $\bar{\Theta} \equiv a(x)/f_a$ dynamical \rightarrow zero through potential Peccei & Quinn, 77
- realized w global U(1)_{PQ} spontaneously broken at f_a, the axion is phase (Goldstone boson) of this symmetry

5 / 30

Weinberg, Wilczek, 78

- make $\bar{\Theta} \equiv a(x)/f_a$ dynamical \rightarrow zero through potential Peccei & Quinn, 77
- realized w global $U(1)_{\rm PQ}$ spontaneously broken at f_a , the axion is phase (Goldstone boson) of this symmetry

Weinberg, Wilczek, 78

- originally $f_a \sim \Lambda_{\rm EW}$ (see arXiv:1710.03764 for revival)
- $f_a \gg \Lambda_{\rm EW}$ 'invisible axion models' 'KSVZ' & 'DFSZ' Kim, Shifman, Vainshtein, Zakharov

& Dine, Fischler, Srednicki, Zhitnitsky

"I named them after a laundry detergent, since they clean up a problem with with an axial current." (Nobel lecture 2004)

- make $\bar{\Theta} \equiv a(x)/f_a$ dynamical \rightarrow zero through potential Peccei & Quinn, 77
- realized w global $U(1)_{\rm PQ}$ spontaneously broken at f_a , the axion is phase (Goldstone boson) of this symmetry

Weinberg, Wilczek, 78

- originally $f_a \sim \Lambda_{\rm EW}$ (see arXiv:1710.03764 for revival)
- $f_a \gg \Lambda_{\rm EW}$ 'invisible axion models' 'KSVZ' & 'DFSZ' Kim, Shifman, Vainshtein, Zakharov

& Dine, Fischler, Srednicki, Zhitnitsky

- $m \sim 0.6 \mathrm{meV}/(f_a/10^{10} \mathrm{GeV}) \rightarrow \mathrm{pseudo-Goldstone\ boson}$
- couple to photons: Primakoff effect \rightarrow basis of most experiments

[good reading: 9506229 Sikivie's Pooltable]

[Figure taken from Redondo, BD, 1311.5341]

• Axion ColdDM via (misalignment) 📱 🔊 🤉

Babette Döbrich (CERN) based on work wAxion and ALP searches with NA62 and RA

2 Axion Searches with Haloscopes

3 Set-up: NA62

э

Dark Matter Axions (Haloscopes)

Babette Döbrich (CERN) based on work wAxion and ALP searches with NA62 and RA

Dark Matter Axions (Haloscopes)

[plot taken from review: 1801.08127 by Irastorza/Redondo]

- Axions & ALPs \rightarrow dark matter candidate \rightarrow Haloscope [Sikivie '83] **resonant** technique $f_{\text{cavity}} \sim \omega_{\text{photon}} \sim m_{\text{axion}}$
- results obtained in Axion Band: ADMX and HAYSTACK
 - \odot $\vec{E} \cdot \vec{B}$ (only certain modes OK)
 - © very narrow band (tuning)

Babette Döbrich (CERN) based on work wAxion and ALP searches with NA62 and RA

Interlude: the problem with large axion masses

- $\bullet~$ Axion not overabundant above masses of $\sim 10^{-6} eV$
- naively: large m → lower
 resonance f → lower dimension
- Output power from cavity: $P \sim g^2 \frac{\rho}{m} B^2 \ V \ Q \ G$
- Quality factor $Q \sim 1/\Delta f
 ightarrow long scan times$
- $Q \sim \frac{V}{\delta S}$ Volume to surface ratio: gets bad at large Volumes
- proposed soln's: larger *B* (CAPP), superconducting cavity, very low *T*_{noise}, dielectric layers (MADMAX)...

8 / 30

Interlude: the problem with large axion masses

- $\bullet\,$ Axion not overabundant above masses of $\sim 10^{-6} eV$
- naively: large m → lower
 resonance f → lower dimension
- Output power from cavity: $P \sim g^2 \frac{\rho}{m} B^2 \ V \ Q \ G$
- Quality factor $Q \sim 1/\Delta f
 ightarrow long scan times$
- $Q \sim \frac{V}{\delta S}$ Volume to surface ratio: gets bad at large Volumes
- proposed soln's: larger B (CAPP), superconducting cavity, very low T_{noise}, dielectric layers (MADMAX)...

Babette Döbrich (CERN) based on work wiAxion and ALP searches with NA62 and RA

A B F A B F

Interlude: RADES concept explored at CERN Melcon et al [1803.01243]

Melcon et al [1803.01243]

- RADES at CERN: retain large volume at high resonance frequencies large using subcavities $m \sim 34 \mu \text{eV}$
- sub-cavity sets resonance scale
- only first resonant mode couples to the axion

Babette Döbrich (CERN) based on work wAxion and ALP searches with NA62 and RA

Interlude: RADES concept explored at CERN Melcon et al [1803.01243]

- RADES at CERN: retain large volume at high resonance frequencies large using subcavities m ~ 34μeV
- sub-cavity sets resonance scale
- only first resonant mode couples to the axion
- 5-cavities prototype tested this winter 2017/2018
- currently conceiving larger number of sub-cavities and tuning

Babette Döbrich (CERN) based on work wAxion and ALP searches with NA62 and RA

9 / 30

Interlude: RADES concept explored at CERN Melcon et al [1803.01243]

Analytical model vs Simulations (Preliminary results)

- RADES at CERN: retain large volume at high resonance frequencies large using subcavities m ~ 34μeV
- sub-cavity sets resonance scale
- only first resonant mode couples to the axion
- 5-cavities prototype tested this winter 2017/2018
- currently conceiving larger number of sub-cavities and tuning
- now 3 prototypes exploring these aspects

Babette Döbrich (CERN) based on work wiAxion and ALP searches with NA62 and RA

∃ ► < ∃ ►</p>

< 口 > < 同 >

э

ALPs at higher masses

want to produce DM or something 'mediating' it

Babette Döbrich (CERN) based on work wAxion and ALP searches with NA62 and RA

ALPs at higher masses

- Some models of Dark Matter propose MeV mass, very weakly-coupled particles e.g.
- production needs sufficiently high energy & high intensity & long detection volumes
- fixed target facility is an obvious choice

Marseille, 24/08/18

11 / 30

Babette Döbrich (CERN) based on work wAxion and ALP searches with NA62 and RA

Important parameters in the fixed-target setup

- Beam energy & type (e, p, μ), number of beam particles shot on target, composition of target material
- 'shield length' and length & volume of the decay region
- background rejection by shield or detector capabilities
- detector types for decay products: charged/neutral Standard Model Particles or scattering of DM itself
- timeline of data-taking and cost

Important parameters in the fixed-target setup

- Beam energy & type (e, p, μ), number of beam particles shot on target, composition of target material
- 'shield length' and length & volume of the decay region
- background rejection by shield or detector capabilities
- detector types for decay products: charged/neutral Standard Model Particles or scattering of DM itself
- timeline of data-taking and cost
- An experiment perfect for long-lived exotics searches is taking data as we speak: NA62

NA62 and $K \rightarrow \pi \nu \bar{\nu}$: motivation and state of art

- ultra-rare FCNC decay, theory prediction: $(K \rightarrow \pi \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ Buras et al. JHEP 1511, 33
- experiment at BNL, E949 (2008), stopped Kaons: BR $(K \to \pi \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ Phys. Rev. D 79, 092004

13 / 30

- ultra-rare FCNC decay, theory prediction: $(K \to \pi \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ Buras et al. JHEP 1511, 33
- experiment at BNL, E949 (2008), stopped Kaons: BR($K \to \pi \nu \bar{\nu}$) = $(17.3^{+11.5}_{-10.5}) \times 10^{-11}$ Phys. Rev. D 79, 092004
- NA62 primary goal: measurement of BR($K \rightarrow \pi \nu \bar{\nu}$) with 10% signal acceptance (decay in flight) $\Rightarrow 10^{13}K^+$ in fiducial volume
- BR correlated with flavor observables & sensitive to new physics, e.g. flavored axion models Phys. Rev. D 95, 095009 (2017)

・ 同 ト ・ ヨ ト ・ ヨ ト

NA62 rationale

A Kaon's life:

- BR($K \rightarrow \pi^+ \pi^0$) $\simeq 0.21$
- BR($K
 ightarrow \mu^+
 u$) \simeq 0.64
- BR($K \rightarrow \pi^+\pi^-\pi^+$) $\simeq 0.06$

Detector system

- Kaon: KTAG, GTK, CHANTI
- Pion: STRAW, CHOD, RICH
- $\bullet~\gamma$ Vetoes: LAV, IRC, SAC, LKr
- MUV system: μ & Hadron

unseparated 750 MHz beam at GTK3 (6.6 % Kaons at 75 GeV, 1 % bite)

NA62 rationale II & requirements

•
$$m_{\rm miss}^2 = (P_K - P_\pi)^2$$

- 10¹² background rejection!
- kinematic $\mathcal{O}(10^4)$
- high-efficiency veto: $\mathcal{O}(10^8)$ rejection of π^0 for $E(\pi^0) > 40 {\rm GeV}$
- particle ID μ vs π : rejection of $\mathcal{O}(10^7)$ for $15 < p_{\pi^+} < 35 \text{GeV}$
- \bullet timing subdetectors $\mathcal{O}(100 \mathrm{ps})$

 \downarrow R1 \downarrow R2

1 event in 2016 data (see R. Marchevski, June seminar)

$$\begin{split} &BR(K^+ \to \pi^+ \nu \bar{\nu}) < 11 \times 10^{-10} @~90\% ~CL \\ &BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10} @~95\% ~CL \end{split}$$

$$\begin{split} & \text{Expected limit:} \quad BR(K^+ - \pi^{\pm 0} \nu \bar{\nu}) < 10 \times 10^{-10} @ 95\% \ CL \\ & \text{For comparison} \quad BR(K^+ - \pi^+ \nu \bar{\nu}) = 2.8^{+4.4}_{-2.4} \times 10^{-10} @ 68\% \ CL \\ & BR(K^+ - \pi^+ \nu \bar{\nu})_{SM} = (0.84 \pm 0.10) \times 10^{-10} & \text{SM prediction} \\ & BR(K^+ - \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.06}) \times 10^{-10} & \text{BNL E949/E787 Kaon Decay at Rest} \end{split}$$

- Processing of 2017 data ongoing (20-fold present statistics)
- 2018: data taking ongoing \rightarrow This topic deserves

its own talk! \rightarrow stop here :-)

Babette Döbrich (CERN) based on work wAxion and ALP searches with NA62 and RA

Marseille, 24/08/18

16 / 30

Babette Döbrich (CERN) based on work wiAxion and ALP searches with NA62 and RA

 \leftarrow beam collimator (TAX) 'open'

$$\Rightarrow$$
 K^+ to detector \downarrow

- ₹ 🖬 🕨

protons on target (POT) main measurement: BR $\mathcal{O}(10^{-10})$: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ 1) Kaon decay with exotic: $\rightarrow \pi a$

 $\leftarrow \text{ beam collimator (TAX) 'open'}$

$$\Rightarrow$$
 K^+ to detector \downarrow

- ∢ ≣ ▶

protons on target (POT) can produce exotics

> main measurement: BR $\mathcal{O}(10^{-10})$: $K^+ \to \pi^+ \nu \bar{\nu}$ 1) Kaon decay with exotic: $\to \pi a$ 2) parasitically: e.g. exotic $\to I^+I^$ n.b. \sim half the protons don't interact in target

 \leftarrow beam collimator (TAX) 'open'

 \Rightarrow K^+ to detector \downarrow

+ exotic away from beamline

protons on target (POT) can produce exotics

> main measurement: BR $\mathcal{O}(10^{-10})$: $K^+ \to \pi^+ \nu \bar{\nu}$ 1) Kaon decay with exotic: $\to \pi a$ 2) parasitically: e.g. exotic $\to l^+ l^-$ 3) dedicated data-taking e.g. axion $\to \gamma \gamma$

will be used as example later on

 $\leftarrow \text{ beam collimator closed} \rightarrow \text{dump}$

 $\Rightarrow \quad \mbox{exotics to detector} \downarrow \label{eq:product}$ with much reduced backgrounds

3 Set-up: NA62

Babette Döbrich (CERN) based on work wAxion and ALP searches with NA62 and RA Marseille, 24/08/18 18 / 30

∃ ► < ∃ ►</p>

< 口 > < 同 >

э

Heavy ALPs coupled to photons

 following projections based on Primakov production with in equivalent photon approximation (photon-from-proton) and 0 background assumption (see later...)

Detailed example: understanding ALP contours

production is not exactly forward (but not relevant for the moment)
NA62: d_{tax} ~ 81m, L_{tracker} ~ 65m, L_{calo} ~ 135m

Detailed example: understanding ALP contours

- production is not exactly forward (but not relevant for the moment)
- NA62: $d_{
 m tax} \sim$ 81m, $L_{
 m tracker} \sim$ 65m, $L_{
 m calo} \sim$ 135m
- CHARM: $d_{\rm dump} \sim 480$ m, $L_{\rm tracker} \sim 35$ m but offset 5m from beam-axis $\rightarrow A_{\rm effective} = 0.09 \rightarrow N_{\rm POT, effective} \sim 2 \times 10^{17}$
- NuCal: $d_{
 m dump}\sim 64$ m, $L_{
 m tr.}\sim 23$ m, $N_{
 m POT}\sim 2 imes 10^{18}$ but $E=70{
 m GeV}$

Detailed example: understanding ALP contours

- production is not exactly forward (but not relevant for the moment)
- NA62: $\mathit{d}_{\mathrm{tax}} \sim$ 81m, $\mathit{L}_{\mathrm{tracker}} \sim$ 65m, $\mathit{L}_{\mathrm{calo}} \sim$ 135m
- CHARM: $d_{\text{dump}} \sim 480$ m, $L_{\text{tracker}} \sim 35$ m but offset 5m from beam-axis $\rightarrow A_{\text{effective}} = 0.09 \rightarrow N_{\text{POT,effective}} \sim 2 \times 10^{17}$
- NuCal: $d_{
 m dump}\sim 64$ m, $L_{
 m tr.}\sim 23$ m, $N_{
 m POT}\sim 2 imes 10^{18}$ but $E=70{
 m GeV}$
- general picture persists for other use-cases \rightarrow reason for parasitic triggers: complementary sensitivity also, e.g. for ALPs to l^+l^- + Dark Photons + Heavy Neutral Leptons...

Thanks for listening :-)

we are in the middle of 2018 NA62 data-taking

- NA62 first result for main analysis channel just released
- analysis of $\mathcal{O}(10^{16})$ POT in dump-mode ongoing for neutral & charged final states
- analysis of $\mathcal{O}(10^{17})$ POT in parastic mode on-going for charged final states

we are taking new data with the RADES cavity from mid-september

- our aim is to delevop a cavity concept sensitive to QCD axions $\gg 10 \mu {\rm eV}$
- test cavity performance validated, working on several improvements

<⇒> ∃

Additional slides/backup

Babette Döbrich (CERN) based on work waxion and ALP searches with NA62 and RA Marseille, 24/08/18 22 / 30

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2

Supplement: Projections for DM Axions with RADES

From JCAP 05, 040: Melcón,[...], BD et al.

ightarrow QCD Axion relation: $g_{a\gamma} \equiv 2 \times 10^{-16} C_{a\gamma} \frac{m_a}{\mu eV} \text{ GeV}^{-1}$ KSVZ and yellow band: Axion models

→ note: prospect 'Axiflavon' reach for NA62: $m_a \gtrsim 10^{-5} \text{eV}$ [PRD 95, 095009]

Marseille, 24/08/18 23 / 30

Charged bkg rejection: 2016 data $\mathcal{O}(10^{15})$ POT

- Track quality (association with CHOD, LKr hits in time) + acceptance (CHOD, LKr, MUV3)
- Vertex quality: two-track-distance $<1{\rm cm},$ vertex-position 105< z <165 m
- further veto (rhs): $E_{\rm LKr, additional} < 2$ GeV; IRC, SAC, LAV no hits with \pm 5ns, CHANTI no candidate within \pm 5ns
- no events in signal region at TAX even with standard K^+ beam at $\mathcal{O}(10^{15})$ POT, background rejection OK for $\mathcal{O}(10^{15})$ POT in standard conditions and $\mathcal{O}(10^{16})$ in dump

2+3) Exotic from dumped-beam: prospects

- Parasitic to $\pi \nu \bar{\nu}$: flavored axion, invisible Dark Photons, heavy Neutrinos, Dark Scalars...
- **2** Trigger Parasitic to $\pi\nu\bar{\nu}$: $\mu\pi + \mu\mu$ away from beamline: 2017: $\mathcal{O}(10^{17})$ POT, sizable statistics $\mathcal{O}(10^{18})$ POT possible this year
- Image: dump-mode: sizable statistics $\mathcal{O}(10^{18})$ reserved for future, but some channels discovery potential with moderate statistics (e.g. ALP $\mathcal{O}(10^{16})$)
 Current Run
 Run3
 Run4

Under study / definition, interaction/synergy with the Physics Beyond Collider CERN initiative

(4 回) (4 回) (4 回)

Fiducial cross-section: importance of being boosted

fiducial cross-section

- requirement: reach the decay volume and detect two γ with certain geometrical constraints in Calorimeter
- two examplary parameter points of the fiducial cross-section

analysis impact

probability to reach decay volume ~ exp(-l_{absorber}/l_d), l_d = γβτ ~ E_a/m 64π/m³g²
 large (g, m) more boosted, possibility to choose appropriate signal box for such (g, m)

Babette Döbrich (CERN) based on work wiAxion and ALP searches with NA62 and RA

2016 data: $\sim 10^{11} {\it K}^+$ useful for analysis

- K^+ decay into single charged track, π^+ PID, γ & multi-track rejection
- Performances: GTK-KTAG-RICH timing: O(100 ps), $\gamma/\text{multi-track}$ rejection: 3×10^{-8} , overall π^+ ID: 64%,

Single Event Sensitivity and background budget

SES =	1	$N_{\pi\pi} \cdot D$	$\cdot D$
	$\overline{N_K \cdot (A_{\pi\nu\nu} \cdot \epsilon_{RV} \cdot \epsilon_{trig})}$	$N_K = \frac{1}{A_{\pi\pi}}$	$\overline{BR_{\pi\pi}}$

Number of K^+ Decays	${ m N_K} = (1.21 \pm 0.02) imes 10^{11}$		
Acceptance $K^+ \to \pi^+ \nu \bar{\nu}$	$A_{\pi\nu\nu} = 0.040 \pm 0.001$		
PNN trigger efficiency	$\epsilon_{trig} = 0.87 \pm 0.02$		
Random veto	$\epsilon_{RV} = 0.76 \pm 0.04$		
SES	$(3.15\pm0.01_{\rm stat}\pm0.24_{\rm syst}) imes10^{-10}$	Process	Expected events in R1+R2
Expected SM $K^+ \to \pi^+ \nu \bar{\nu}$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$	$K^+ \to \pi^+ \nu \bar{\nu} \ (SM)$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$
		Total Background	$0.15\pm0.09_{\rm stat}\pm0.01_{\rm syst}$
		$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
		$K^+ \rightarrow \mu^+ \nu(\gamma)$ IB	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
		$K^+ \to \pi^+\pi^- e^+ \nu$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
		$K^+ \to \pi^+ \pi^+ \pi^-$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$
		Upstream Background	$0.050^{+0.090}_{-0.030} _{stat}$

- N_K computed from $K^+ \rightarrow \pi^+ \pi^0$ on control trigger stream (D = 400), w/o γ and multiplicity rejection and modified m_{miss}^2 -cut
- Expected number of events from 2016 data: BR_{SM theory}/SES
- validation of background expectations in control regions, see e.g. https://indico.cern.ch/event/714178/ for details

Background modelling by conventional beams group

M.Rosenthal

- Geant4 beamline model, aim: potential optimization of beamline for future longer exotics/dump runs
- can provide valuable input for data already on tape

Benchmarking the Muon Halo + secondaries

- impressive benchmark for single charged tracks; reduction factor: > \$\mathcal{O}\$(10⁵)
- ongoing benchmarking for coincident charged tracks (e⁺e⁻), suspicion of double-bremsstrahlung with 'lost tracks' as di-γ background

Benchmarking continued

- Characteristic muon distribution reproduced
- Rates at higher momenta estimated from extrapolation
- Absolute scaling of data and MC differs by factor ~5
 - → under investigation (comp. expensive)

L.Gatignon, 13-06-2018

Marseille, 24/08/18

30 / 30

Babette Döbrich (CERN) based on work wAxion and ALP searches with NA62 and RA