Ultra High Energy Cosmic Rays In the Pierre Auger Observatory Era

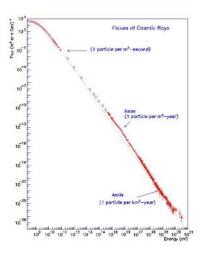
X. Bertou for the Pierre Auger Collaboration

CNEA/CONICET
Centro Atómico Bariloche

Meeting of the Cosmic Rays Division of the Mexican Physical Society, 04/10/2018

Cosmic Rays Before the Pierre Auger Observatory Era

What are Cosmic Rays?


- Energetic radiation from space
- Discovered in 1912 by Victor Hess
- Named Cosmic Rays by Millikan

Reading for your kids:

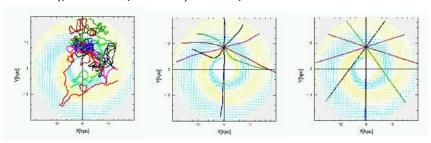
http://www.telescopearray.org/media/cosmicrays_e.pdf

Cosmic Rays Spectrum

- Power law with index 2.7
- 12 orders of magnitude in energy
- 32 orders of magnitude in flux
- only few features
 - Knee: 1 event/m²/year
 - Ankle: 1 event/km²/year

UHECR

- At 10^{20} eV: 1 event/km²/century
- First event: Volcano Ranch, 1962



UHECR Astronomy

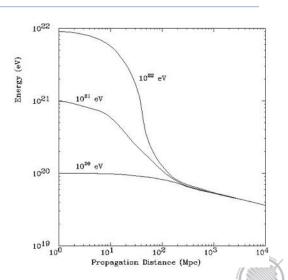
Magnetic fields

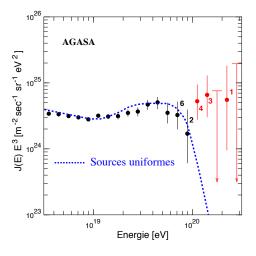
At low energies, CR are deflected by galactic and extra-galactic magnetic fields.

UHECR (protons in particular) should point to the source

 $10^{18}\,\mathrm{eV}$

10¹⁹ eV

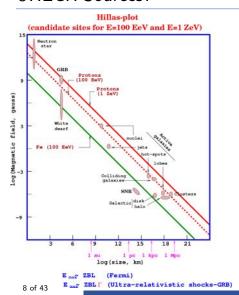

 $10^{20} \, eV$


GZK cut-off

At UHE, protons interact with CMB photons by photo production, and nuclei with CMB and IR photons through photo dissociation

UHECR should lose energy quickly on short distances (< 100 Mpc)

AGASA Spectrum (2002)

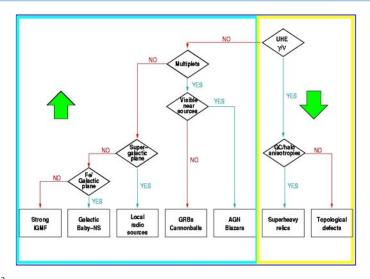


AGASA

- 111 scintillator detectors, over 100 km² for 11 years
- Exciting feature: softer slope at UHE
- Even better: post-GZK events

UHECR Sources?

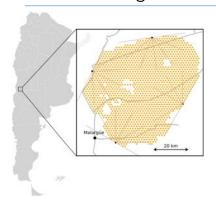
Bottom-Up


• $E_{\rm max} \simeq Z \ B \ L$

Top-Down

- Super massive particle
- Topological Defect

The Model Killer



the Pierre Auger Observatory

The Pierre Auger Observatory

In Malargüe (Argentina)

- 69.3° W. 35.3° S
- 1400 m a.s.l. $(870 \,\mathrm{g\,cm^{-2}})$

Design

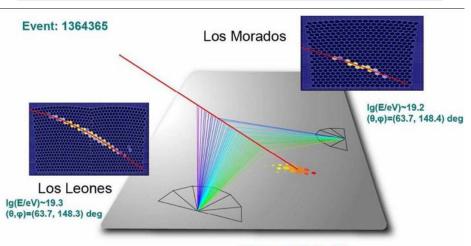
- UHECR study ($E \geq 10^{18}\,\mathrm{eV}$)
- Construction over in 2008

UHECR hybrid detection

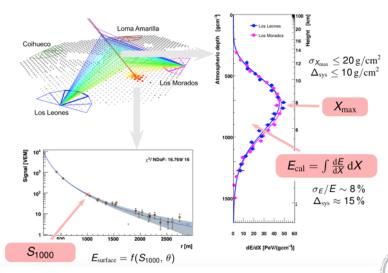
- Ground detectors (SD): 1600 Water
 Cherenkov Detectors covering 3000 km² on a 1500 m triangular grid
- Fluorescence detectors (FD): 24 fluorescence telescopes in 4 sites observing over the SD area

Ground detectors: WCD

- 10 m² area rotationally molded polyethylene tanks
- 12 m³ ultra pure water in a diffusive bag
- Cherenkov light collected by three
 9" PMTs
- 40 MHz FADC digitization
- Radio wireless communication
- GPS based timing
- Battery and solar panel powered

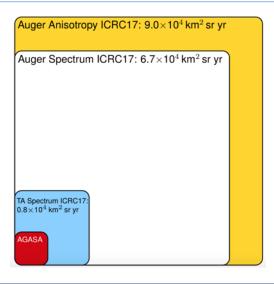

Fluorescence telescopes

- 4 FD buildings
- 6 cameras per building
- UV filters
- 440 PMT per camera
- $180^{\circ} \times 30^{\circ}$ field of view
- 10% duty cycle
- Observes longitudinal development
- Calorimetric energy measurement
- Composition measurement (X_{max})



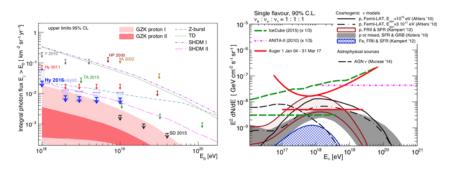
Hybrid events

SD array: Ig(E/eV)~19.1 (θ,φ)=(63.3, 148.9) deg


Hybrid reconstruction

The new Era for UHECR

UHE Exposure

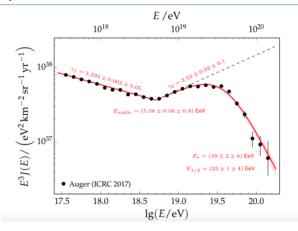


The new Era for UHECR

Bottom Up vs Top Down Spectrum Composition Looking for the sources High Energy Physics

No photons, no neutrinos

- Top Down model interpretation of UHECR rejected
- Search for Cosmogenic Photons and Neutrinos started
- Search for multimessenger (Ex: Binary Neutron Star Merger)



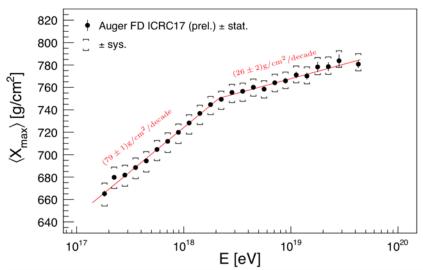
The new Era for UHECR

Spectrum
Composition
Looking for the sources
High Energy Physics

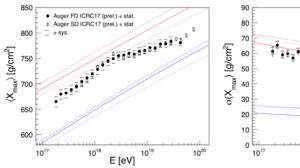
Energy Spectrum

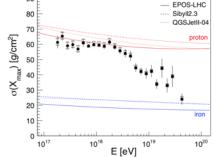
- Strong suppression at 40 EeV (GZK? Source limit?)
- 1 event per km.sr per milenium at 100 EeV

The new Era for UHECR


Bottom Up vs Top Down
Spectrum

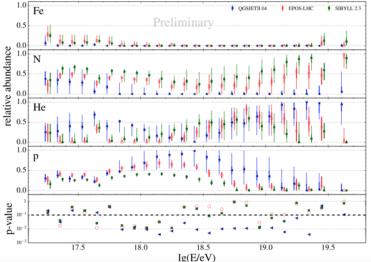
Composition


Looking for the sources High Energy Physics



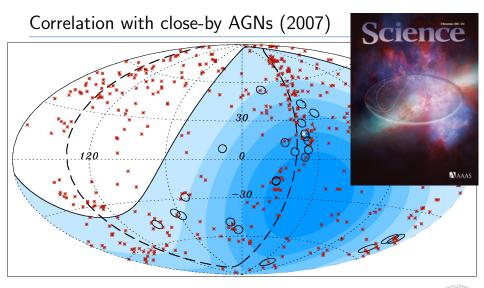
Average X_{max} measured by FD

Composition measurements



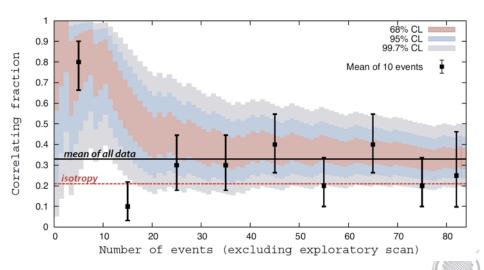
- Lines from post-LHC models
- Composition trend changes around ankle
- UHECR heavy

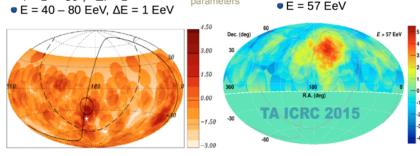
4 components distribution fits



The new Era for UHECR

Spectrum
Composition
Looking for the sources


High Energy Physics



Evolution of correlation with close-by AGNs

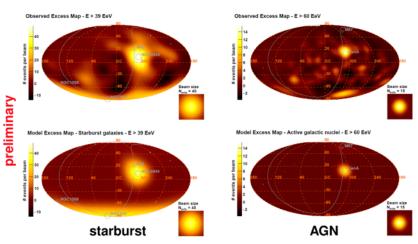
Small scale searches (Auger+TA)

Auger scan • $r = 1^{\circ} - 30^{\circ}$, $\Delta r = 1^{\circ}$ parameters

- r = 12°, E = 54 EeV
- $n_{obs}/n_{exp} = 14/3.23$
- pre-trial \rightarrow 4.3 σ
- post-trial P = 69%

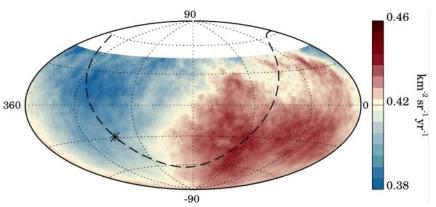
scan minima

- r = 20°, E = 57 EeV
- $n_{obs}/n_{exp} = 24/6.88$
- pre-trial \rightarrow 5.1 σ
- post-trial \rightarrow 3.4 σ


TA, ICRC 2015

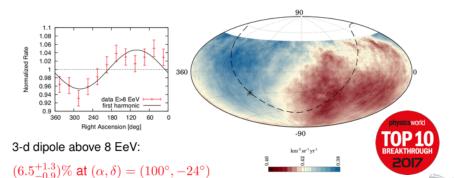
TA

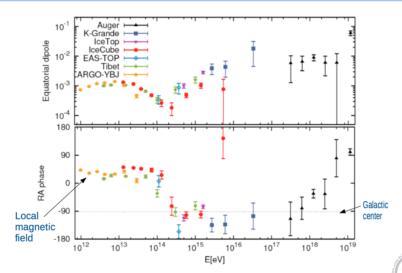
• $r = 15^{\circ} - 35^{\circ}$, $\Delta r = 5^{\circ}$


Source catalogues comparison

Post-trial significance 3.9σ and 2.7σ respectively

Large scale anisotropies

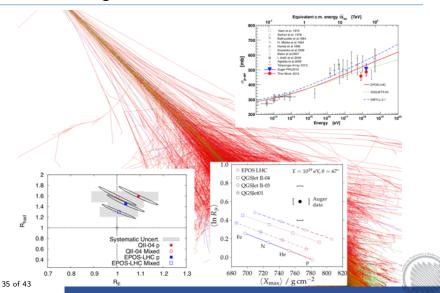

 $E>8\, EeV$, smoothing angle 45^o


Harmonic analysis in right ascension α

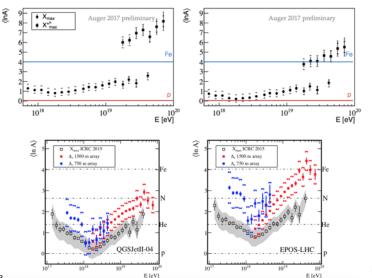
$E\left[EeV\right]$	events	amplitude r	phase [deg.]	$P(\geq r)$
4-8	81701	$0.005^{+0.006}_{-0.002}$	80 ± 60	0.60
> 8	32187	$0.047^{+0.008}_{-0.007}$	100 ± 10	2.6×10^{-8}

significant modulation at 5.2σ (5.6 σ before penalization for energy bins explored)

Large scale anisotropies



The new Era for UHECR


Spectrum
Composition
Looking for the sources
High Energy Physics

HEP with Auger

Still lacking coherent view

What we learned

- UHECR are accelerated in astrophysical sources
- Bottom-Up, no new physics
- Ankle likely transition from galactic to extragalactic sources
- UHECR are extragalactic
- Strong suppression at UHE
- Muon deficit in models

Message to my LHC colleagues: we call that the disappointing model

The next Era for UHECR

Auger Prime

What next?

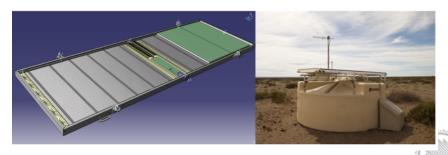
- Origin of the flux suppression?
- Proton fraction at UHE?
- Rigidity-dependence of anisotropies?
- Hadronic physics above $\sqrt{s} = 140$ TeV?

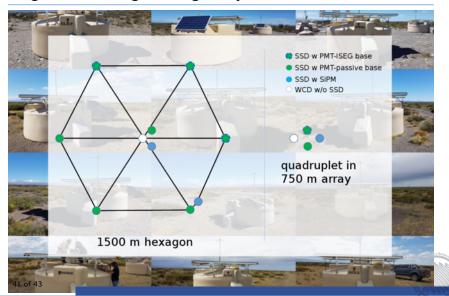
need large-exposure detector with composition sensitivity!

arXiv:1604.03637v1 [astro-ph.IM] 13 Apr 2016

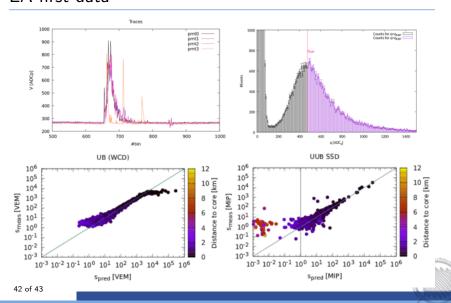
The Pierre Auger Observatory Upgrade "AugerPrime"

Preliminary Design Report


The Pierre Auger Collaboration April, 2015



New detectors to get composition event by event


- 3.8 m² scintillators (SSD) on each 1500-m array station
- upgrade of station electronics
- additional small PMT to increase dynamic range
- buried muon counters in 750-m array (AMIGA)
- · increased FD uptime

Auger Prime engineering array

EA first data

Conclusions

- 10+ years of the Pierre Auger Observatory data changed greatly the community view of HECR
- Bottom Up CR acceleration
 - No new physics
 - Astrophysical sources
- Galactic Extragalactic transition at Ankle
 - Not a propagation effect
 - Source effect
- Flux suppression at highest energies
 - G7K effect?
 - Source acceleration limit?
- Muon deficit in models at highest energies
- Auger Upgrade will address remaining questions

