

Testing fundamental physics with Astrophysical Sources: LIV

Humberto Martínez-Huerta, IFSC-USP, Brazil

Meeting of the Cosmic Rays Section of the Mexican Physical Society 3-5 Oct 2018

- I. Lorentz invariance violation (LIV)
- II. Limits: TeV γ -rays
 - i. Time Energy Dependent delay
 - ii. Photon Decay
 - iii. Pair production threshold shifts

III. UHECR

- i. GZK-photons + LIV
- ii. Limits: UHECR

- I. Lorentz invariance violation (LIV)
- II. Limits: TeV γ -rays
 - i. Time Energy Dependent delay
 - ii. Photon Decay
 - iii. Pair production threshold shifts

III. UHECR

- i. GZK-photons + LIV
- ii. Limits

Fundamental Forces of Nature

- SM & GR: the best theories describing the 4-fundamental Forces.
- No conflict with predictions from either of them.
- They are fundamentally different.

New Physics involves new features, such as:

- □ Higher Dimensions of s-t
- Brane World scenarios
- Noncomutative geometries
-

The law of relativity might not hold exactly at all

energy scales — Lorentz Invariance Violation (LIV)

... LI may not be an exact symmetry of Nature

$$E^2 - p^2 \pm \epsilon A^2 = m^2,$$

 $\epsilon \to \epsilon(A)$

A general modification to the dispersion relation would rather involve a general function of energy and momentum

$$\epsilon(A)A^{2} = \epsilon(0)A^{2} + \epsilon'(0)A^{(2+1)} + \frac{\epsilon''(0)}{2!}A^{(2+2)} + \frac{\epsilon'''(0)}{3!}A^{(2+3)} + \dots$$

The dispersion relation:

$$E^2 - p^2 \pm \delta_n A^{n+2} = m^2$$
, $\delta_n^{n \ge 1} \epsilon^{(n)} / M^n = 1 / (E_{LIV}^{(n)})^n$
not necessarily bound to a particular LIV-model, which allows
to generalize to some point the search of LIV-signatures.

it is

$$E^2 - p^2 \pm \epsilon A^2 = m^2,$$

 $\epsilon \to \epsilon(A)$

A general modification to the dispersion relation would rather involve a general function of energy and momentum

$$\epsilon(A)A^{2} = \epsilon(0)A^{2} + \epsilon'(0)A^{(2+1)} + \frac{\epsilon''(0)}{2!}A^{(2+2)} + \frac{\epsilon'''(0)}{3!}A^{(2+3)} + \dots$$

The dispersion relation:

$$E^2 - p^2 \pm \delta_n A^{n+2} = m^2, \ \delta_n^{n \ge 1} \epsilon^{(n)} / M^n = 1 / (E_{LIV}^{(n)})^n$$

it is not necessarily bound to a particular LIV-model, which allows to generalize to some point the search of LIV-signatures.

n=1

LIV negligible at the lower standard energies

$$E^2 - p^2 \pm \epsilon A^2 = m^2,$$

 $\epsilon \to \epsilon(A)$

A general modification to the dispersion relation would rather involve a general function of energy and momentum

$$\epsilon(A)A^{2} = \epsilon(0)A^{2} + \epsilon'(0)A^{(2+1)} + \left(\frac{\epsilon''(0)}{2!}A^{(2+2)}\right) + \frac{\epsilon'''(0)}{3!}A^{(2+3)} + \dots$$

The dispersion relation:

n=2

 $E^2 - p^2 \pm \delta_n A^{n+2} = m^2, \quad \delta_n \stackrel{n \ge 1}{=} \epsilon^{(n)} / M^n = 1 / (E_{LLV}^{(n)})^n$

it is not necessarily bound to a particular LIV-model, which allows to generalize to some point the search of LIV-signatures. LIV negligible at the lower standard energies

$$E^2 - p^2 \pm \epsilon A^2 = m^2,$$

 $\epsilon \to \epsilon(A)$

A general modification to the dispersion relation would rather involve a general function of energy and momentum

$$\epsilon(A)A^{2} = \epsilon(0)A^{2} + \epsilon'(0)A^{(2+1)} + \frac{\epsilon''(0)}{2!}A^{(2+2)} + \frac{\epsilon'''(0)}{3!}A^{(2+3)} + \dots$$

The dispersion relation:

$$E^2 - p^2 \bigoplus \delta_n A^{n+2} = m^2, \quad \delta_n^{n \ge 1} \epsilon^{(n)} / M^n = 1 / (E_{LIV}^{(n)})^n$$

it is not necessarily bound to a particular LIV-model, which allows to generalize to some point the search of LIV-signatures. LIV negligible at the lower standard energies I. Lorentz invariance violation (LIV)

II. Limits: TeV γ-rays

- i. Time Energy Dependent delay
- ii. Photon Decay
- iii. Pair production threshold shifts

III. UHECR

- i. GZK-photons + LIV
- ii. Limits

LIV limits by y-rays

Pair production shift threshold Time Energy Dependent -delay Photon decay Time Energy Dependent -delay

Pair production shift threshold Time Energy Dependent -delay Photon

Time Energy Dependent -delay

decay

- I. Lorentz invariance violation (LIV)
- II. Limits: TeV γ -rays
 - i. Time Energy Dependent delay
 - ii. Photon Decay
 - iii. Pair production threshold shifts

III. UHECR

- i. GZK-photons + LIV
- ii. Limits

(

The corresponding differential relation between time and redshift is

$$dt = -H_0^{-1} \frac{dz}{(1+z)h(z)}$$
; $h(z) = \sqrt{\Omega_{\Lambda} + \Omega_m (1+z)^3}$

The corresponding differential relation between time and redshift is

$$dt = -H_0^{-1} \frac{dz}{(1+z)h(z)}$$

A particle with velocity u travels an elementary distance:

;
$$h(z) = \sqrt{\Omega_{\Lambda} + \Omega_m (1+z)^3}$$

Two particles with velocities differing by Δu

$$u dt = -H_0^{-1} \frac{u dz}{(1+z)h(z)} \longrightarrow \Delta L = H_0^{-1} \int_0^z \frac{\Delta u dz}{(1+z)h(z)}$$

The corresponding differential relation between time and redshift is

$$dt = -H_0^{-1} \frac{dz}{(1+z)h(z)}$$

A particle with velocity u travels an elementary distance

;
$$h(z) = \sqrt{\Omega_{\Lambda} + \Omega_m (1+z)^3}$$

Two particles with velocities differing by Δu

$$u \, dt = -H_0^{-1} \frac{u \, dz}{(1+z)h(z)} \longrightarrow \Delta L = H_0^{-1} \int_0^z \frac{\Delta u \, dz}{(1+z)h(z)}$$

LIV - energy dependence group velocity

$$E_{\gamma}^2 = p^2 \pm \left(\frac{E_{\gamma}^2}{E_{LIV}^{(n)}}\right)^n \longrightarrow \quad u = \frac{\mathrm{dE}}{\mathrm{dp}} \approx 1 + \frac{n+1}{2} \left(\frac{E_{\gamma}}{E_{LIV}^{(n)}}\right)^n$$

The corresponding differential relation between time and redshift

$$dt = -H_0^{-1} \frac{dz}{(1+z)h(z)}$$

;
$$h(z) = \sqrt{\Omega_{\Lambda} + \Omega_m (1+z)^3}$$

Let be u, a particle velocity

Au : two particles with velocities differing by

$$u \, dt = -H_0^{-1} \frac{u \, dz}{(1+z)h(z)} \longrightarrow \Delta L = H_0^{-1} \int_0^z \frac{\Delta u \, dz}{(1+z)h(z)}$$

LIV - energy dependence group velocity

$$E_{\gamma}^2 = p^2 \pm \left(\frac{E_{\gamma}^2}{E_{LIV}^{(n)}}\right)^n \longrightarrow$$

$$u = \frac{\mathrm{dE}}{\mathrm{dp}} \approx 1 + \frac{n+1}{2} \left(\frac{E_{\gamma}}{E_{LIV}^{(n)}}\right)^n$$

The corresponding differential relation between time and redshift

$$dt = -H_0^{-1} \frac{dz}{(1+z)h(z)}$$

;
$$h(z) = \sqrt{\Omega_{\Lambda} + \Omega_m (1+z)^3}$$

Let be u, a particle velocity

Au : two particles with velocities differing by

$$u dt = -H_0^{-1} \frac{u dz}{(1+z)h(z)} \longrightarrow \Delta L = H_0^{-1} \int_0^z \frac{\Delta u dz}{(1+z)h(z)}$$

LIV - energy dependence group velocity

$$u = \frac{\mathrm{dE}}{\mathrm{dp}} \approx 1 + \frac{n+1}{2} \left(\frac{E_{\gamma}}{E_{LIV}^{(n)}}\right)^n$$

$$\Delta t = H_0^{-1} \left(\frac{\Delta E}{E_{LIV}^{(n)}}\right)^2 \int_0^z \frac{(1+z)dz}{h(z)}$$

Constraints on Lorentz Invariance Violation from *Fermi*-Large Area Telescope Observations of Gamma-Ray Bursts

V. Vasileiou,^{1,} A. Jacholkowska,^{2,} F. Piron,¹ J. Bolmont,² C. Couturier,²

J. Granot,³ F. W. Stecker,^{4,5} J. Cohen-Tanugi,¹ and F. Longo^{6,7}

GRB Name	PairView		SMM		Likelihood ^a			
			$n=1, s_{\pm}=+$	-1 (E _{Pl} units)				
	95%	99.5%	95%	99.5%	95%	99.5%		
080916C	0.11	0.081	0.09	0.067	0.22	0.2		
090510	7.6	1.3	5.9	1.2	5.2	4.2		
090902B	0.17	0.13	0.15	0.11	0.12	0.074		
090926A	_	0.55	8	0.35	1.2	0.45		
		$n=1, s_{\pm}=-1$ (E _{Pl} units)						
	95%	99.5%	95%	99.5%	95%	99.5%		
080916C	18	0.33	5.4	0.31	0.2	0.18		
090510	0.56	0.48	0.57	0.48	11	3.6		
090902B	0.38	0.2	0.86	0.28	0.37	0.11		
090926A	0.24	0.18	0.2	0.12	0.17	0.15		
	$n=2, s_{\pm}=+1 \ (10^{10} \text{ GeV units})$							
	95%	99.5%	95%	99.5%	95%	99.5%		
080916C	0.31	0.28	0.24	0.21	0.35	0.33		
090510	6.7	3.3	13	3.3	8.6	6.4		
090902B	0.8	0.72	0.73	0.64	0.64	0.49		
090926A	0.67	0.48	9.1	1.6	0.48	0.47		
	$n=2, s_{\pm}=-1 (10^{10} \text{ GeV units})$							
	95%	99.5%	95%	99.5%	95%	99.5%		
080916C	_	0.69	_	5.2	0.34	0.32		
090510	1.9	1.5	1.9	1.5	9.4	5.4		
090902B	1.6	0.97	3.5	1.2	0.64	0.46		
090926A	0.51	0.42	0.51	0.5	0.31	0.26		

Constraints on Lorentz Invariance Violation from *Fermi*-Large Area Telescope Observations of Gamma-Ray Bursts

V. Vasileiou,^{1,} A. Jacholkowska,^{2,} F. Piron,¹ J. Bolmont,² C. Couturier,²

J. Granot,³ F. W. Stecker,^{4,5} J. Cohen-Tanugi,¹ and F. Longo^{6,7}

GRB Name	PairView		SMM $n=1, s_{\pm}=+1$ (E _{Pl} units)		Likelihood ^a		
	95%	99.5%	95%	99.5%	95%	99.5%	
080916C	0.11	0.081	0.09	0.067	0.22	0.2	
090510	7.6	1.3	5.9	1.2	5.2	4.2	
090902B	0.17	0.13	0.15	0.11	0.12	0.074	
090926A	_	0.55	8	0.35	1.2	0.45	
	$n=1, s_{\pm}=-1$ (E _{Pl} units)						
	95%	99.5%	95%	99.5%	95%	99.5%	
080916C	18	0.33	5.4	0.31	0.2	0.18	
090510	0.56	0.48	0.57	0.48	11	3.6	
090902B	0.38	0.2	0.86	0.28	0.37	0.11	
090926A	0.24	0.18	0.2	0.12	0.17	0.15	
		,	$n=2, s_{\pm}=+1$	(10 ¹⁰ GeV units)			
	95%	99.5%	95%	99.5%	95%	99.5%	
080916C	0.31	0.28	0.24	0.21	0.35	0.33	
090510	6.7	3.3	13	3.3	8.6	6.4	
090902B	0.8	0.72	0.73	0.64	0.64	0.49	
090926A	0.67	0.48	9.1	1.6	0.48	0.47	
			$n=2, s_{\pm}=-1$ (10 ¹⁰ GeV units)			
	95%	99.5%	95%	99.5%	95%	99.5%	
080916C	_	0.69	_	5.2	0.34	0.32	
090510	1.9	1.5	1.9	1.5	9.4	5.4	
090902B	1.6	0.97	3.5	1.2	0.64	0.46	
090926A	0.51	0.42	0.51	0.5	0.31	0.26	

$$\Delta t = H_0^{-1} \left(\frac{\Delta E}{E_{LIV}^{(n)}}\right)^2 \int_0^z \frac{(1+z)dz}{h(z)}$$

Table 2 Obtained 95%CL Limits from the Peak Comparison Method

Case	55–100 GeV versus 600–1200 GeV		400–600 GeV versus 600–1200 GeV
		$E_{\rm QG_1}({\rm GeV})$	
$\xi_1 = +1$	2.5×10^{17}		1.1×10^{17}
$\xi_1 = -1$	6.7×10^{17}		$1.1~ imes~10^{17}$
		$E_{\rm QG_2}~({\rm GeV})$	
$\xi_2 = +1$	1.8×10^{10}		1.4 $ imes$ 10^{10}
$\xi_2 = -1$	2.9×10^{10}		1.5×10^{10}

Source	Experiment	Limit on $E_{\rm QG}^{(1)}$	Limit on $E_{\rm QG}^{(2)}$	Distance	Δt	$E_{\rm max}$	Ref.
HAWC Pulsar ref.	HAWC	10 ¹⁷ GeV	$9 \cdot 10^9 { m GeV}$	2kpc	1 ms	500GeV	
HAWC GRB ref.	HAWC	4.9 · 10 ¹⁹ GeV	$1.1 \cdot 10^{11} { m GeV}$	z = 1	1 s	100GeV	

The potential of the HAWC observatory, based on the reference scenarios

Lukas Nellen et al. HAWC- ICRC'15

Lukas Nellen et all HAWC- ICRC'15

High Altitude Water Cherenkov Gamma-Ray Observatory

- I. Lorentz invariance violation (LIV)
- II. Limits: TeV γ -rays
 - i. Time Energy Dependent delay

ii. Photon Decay

iii. Pair production threshold shifts

III. UHECR

- i. GZK-photons + LIV
- ii. Limits

Photon decay

Above this energy threshold, the decay rate is quite efficient that photons should not arrive at Earth from astrophysical distances

If you observe VHE gamma-rays, the LIV process is restricted!!

> H. Martinez and A. Lorenzana Phys.Rev. D95 (2017) 6, 063001

ELIV excluded region due to $\gamma \rightarrow e+e-$

CRAB HEGRA Collaboration. The Astrophysical Journal, 614:897–913, 2004

SNR RX J1713.7.3946 HESS Collaboration,

Astron. Astrophys, **449**, 223 (2007)

E_{LIV} excluded region due to $\gamma \rightarrow e+e-$

CRAB HEGRA Collaboration. The Astrophysical Journal, 614:897–913, 2004

SNR RX J1713.7.3946 HESS Collaboration,

Astron. Astrophys, **449**, 223 (2007)

ELIV potential limits from HAWC for n=1 (left), n=2 (right) and energy unc. of 25%.

ELIV potential limits from HAWC

n=2 and energy unc. of 25%.

Searching LIV signatures with SGSO

SOUTHERN GAMMA-RAY SURVEY OBSERVATORY

White paper in preparation

SOUTHERN GAMMA-RAY SURVEY OBSERVATORY

White paper in preparation

SOUTHERN GAMMA-RAY SURVEY OBSERVATORY

White paper in preparation
Searching LIV signatures with SGSO

SOUTHERN GAMMA-RAY SURVEY OBSERVATORY

Fig. 1

LIV energy scale limits from superluminal searches including a potential reference of SGSO by measuring RXJ1713.7-3946 photons at **80 TeV** and **100 TeV** and the absence of photon decay into electron-positron pairs.

White paper in preparation

- I. Lorentz invariance violation (LIV)
- II. Limits: TeV γ -rays
 - i. Time Energy Dependent delay
 - ii. Photon Decay

iii. Pair production threshold shifts

III. UHECR

- i. GZK-photons + LIV
- ii. Limits

Pair Production

Pair Production

$$\epsilon_{th}^{\text{LIV}} = \frac{m_e^2}{4E_\gamma K(1-K)} - \frac{\delta_{\gamma,n} E_\gamma^{n+1}}{4}$$

Allowed region change with the LIV parameter and the Energy

Pair Production

 $\gamma_{VHE} \gamma_{BKG} \to e^+ e^-$

Optical depth

$$\tau_{\gamma}(E_{\gamma}, z, n) = \int_0^z dz \frac{c}{H_0(1+z)\sqrt{\Omega_{\Lambda} + \Omega_M(1+z)^3}}$$

Pair Production cross section

The

distance

element

Density of

BKG

photons

Breit & Wheeler 1934; Heitler 1960

De Angelis, Alessandro et al. Mon.Not.Roy.Astron.Soc. 432 (2013) 3245-3249

$$\times \int_{-1}^{1} d(\cos\theta) \frac{1 - \cos\theta}{2} \sigma(E_{\gamma}, \epsilon, z, \cos\theta)$$

$$\tau_{\gamma}(E_{\gamma}, z, \eta, n, E_{LIV}^{(n)}) = \int_{0}^{z} dz \frac{c}{H_{0}(1+z)\sqrt{\Omega_{\Lambda} + \Omega_{M}(1+z)^{3}}}$$

$$\times \underbrace{\int_{\epsilon_{th}}^{\infty} d\epsilon \ n_{\gamma}(\epsilon, z)}_{\epsilon_{th}} \times \int_{-1}^{1} d(\cos \theta) \frac{1 - \cos \theta}{2} \sigma(E_{\gamma}, \epsilon, z, \cos \theta)$$
$$\boxed{\epsilon_{th}}^{\text{LIV}} = \frac{m_e^2}{4E_{\gamma}K(1 - K)} - \frac{\delta_{\gamma,n}E_{\gamma}^{n+1}}{4}$$

$$\tau_{\gamma}(E_{\gamma}, z, n, E_{LIV}^{(n)}) = \int_{0}^{z} dz \frac{c}{H_{0}(1+z)\sqrt{\Omega_{\Lambda} + \Omega_{M}(1+z)^{3}}} \int_{\epsilon_{th}^{LIV}}^{\infty} d\epsilon \ n_{\gamma}(\epsilon, z) \int_{-1}^{1} d(\cos\theta) \frac{1 - \cos\theta}{2} \sigma(E_{\gamma}, \epsilon, z, \cos\theta)$$

humbertomh@ifsc.usp.br

Lang, Martinez & De Souza ApJ 853, no.1, 23 (2018)

More photons!!

humbertomh@ifsc.usp.br

Lang, Martinez & De Souza ApJ 853, no.1, 23 (2018)

humbertomh@ifsc.usp.br

Lang, Martinez & De Souza ApJ 853, no.1, 23 (2018)

$$\tau_{\gamma}(E_{\gamma}, z, n, E_{LIV}^{(n)}) = \int_{0}^{z} dz \frac{c}{H_{0}(1+z)\sqrt{\Omega_{\Lambda} + \Omega_{M}(1+z)^{3}}} \int_{\epsilon_{th}^{LIV}}^{\infty} d\epsilon \ n_{\gamma}(\epsilon, z) \int_{-1}^{1} d(\cos\theta) \frac{1 - \cos\theta}{2} \sigma(E_{\gamma}, \epsilon, z, \cos\theta)$$

BKG density Radio-photons

Data from Gervasi el al. (2008)

> Lang, Martinez & De Souza ApJ 853, no.1, 23 (2018)

$$a(E,z) = e^{-\tau}(E,z)$$

The intensity of the LIV effect depends on

- E_γ:
 The energy of the γ-ray
- E_{LIV}:
 The LIV energy scale
- z: The distance of the source.

EBL-Attenuation + LIV

	2 σ	3 σ	5 σ
n=1	$2.8 \times 10^{28} \text{ eV} (2.29 \times \text{E}_{\text{Planck}})$	$1.9 \times 10^{28} \text{ eV} (1.6 \times \text{E}_{\text{Planck}})$	$1.04 \times 10^{28} \text{ eV} (0.86 \times \text{E}_{\text{Planck}})$
n=2	$7.5 \times 10^{20} \text{ eV}$	$6.4 \times 10^{20} \text{ eV}$	$4.7 \times 10^{20} \text{ eV}$

Lorentz and Brun for the HESS collaboration, RICAP16, 2016.

Cherenkov Telescope Array

CTA Consortium

August 2018

México

UNAM

- 7 Scientist
 - Ruben Alfaro
 - Alejandro Lara
 - William Lee
 - Maria Magdalena
 - Lukas Nellen
 - Andrés Sandoval
 - Gagik Tovmassian
- 2 Engineers
 - Fernando Garfias
 - Arturo Iriarte

Brazil

CTA - SP - MST

- IFSC- USP
 - Prof. Vitor de Souza
 - Profa. Manuela Vecchi
 - Profa. Cibelle Celestino
 - Dr. Humberto Huerta
 - Dr. Aion Viana
 - Edyvania Martins
 - Rodrigo Lang
 - Luan Arbeletche
 - Andres Delgado
 - Rodrigo Guedes Lang
 - Danielle Kaori
- IF-USP
 - Prof. Edivaldo Moura
 - Douglas Pimentel
- UFABC
 - Prof. Marcelo Leigui
- Raquel de Almeida
- UFSCar
- Dr. Gustavo Rojas
- UFPR
- Prof. Rita de Cássia
- EEL / USP
 - Prof. Fernando Catalani
 - Prof. Carlos Todero
- SAIFR / IFT UNESP
 - Dr. Fabio locco
 - Dr Ekaterina Karukes
 - Maria Benito

CTA Brazil

- 12 Instituions
- 25 Scientists
- 16 Students

5 Technicians

CTA - Rio

CBPF

٠

- <u>Prof. Ulisses de</u>
 <u>Almeida</u>
- Prof. Ronald Shellard
- Bruno Arsioli
- Bernardo Fraga
- Rodrigo Cardoso
- Amanda Carvalho

CTA - SP - SST

• IAG – USP

- Profa. Elisabete dal Pino
- Prof. Rodrigo Nemmen
- Dr. Rafael Batistai
- Dr. Chandra Singh
- Dr. Grzegorz Kowal
- Dr. Reinaldo Lima
- Dr. Paramita Barai
- Dr. Luis Kadowki
- Dr. Claudio Melioli
- Dr. Juan Ramirez
- Tania Torrejon
- Renato Gimenes
- Pankaj Kushwaha
- Saib Hussain
- Carlos Fermino
- Raniere Menezes
- William Bohórquez
- Lucas Santos
- UNICSul
 - Prof. Anderson Caproni
- EACH / USP
 - Prof. Diego Falceta-Gonçalves

Slide by V. De Souza

- Mohammad Ali

The Array Locations

The y-ray horizon

EBL-Attenuation + LIV

F. Gate et al (CTA Consortium) ICRC'17 arXiv:1709.04185

humbertomh@ifsc.usp.br

...Why use only one source?

There are ~111 measured energy spectra in the TeVCat !

...Why use only one source?

There are ~111 measured energy spectra in the TeVCat !

Lang, Martínez and De Souza arXiv:1810.13215 Submitted

...Why use only one source?

There are ~111 measured energy spectra in the TeVCat !

> Lang, Martínez and De Souza arXiv:1810.13215 Submitted

New best LIV limits!

- Choices of the EBL models
- Model of the intrinsic spectrum
- Energy resolution
- Selection of spectraSelection of energy bins to be used in the calculation of the intrinsic energy spectra

New best LIV limits!

- Choices of the EBL models
- Model of the intrinsic spectrum
- Energy resolution
- Selection of spectraSelection of energy bins to be used in the calculation of the intrinsic energy spectra

LIV limits : γ-rays

LIV limits : γ-rays

LIV limits : γ-rays

Pair production shift threshold

Time energy dependent delay

> Photon decay

Time energy Dependent delay

- Astroparticle physics has recently reached the status of precision science due to the construction of new observatories, operating innovative technologies and the detection of large numbers of events and sources.
 - ➡ The precise measurements of cosmic and gamma rays can be used as test for fundamental physics, such as the Lorentz invariance violation.
- ✤ We have established the best limits to the LIV energy scale to the superluminal and subliminal regime.
 - We developed a new analysis procedures for searching LIV signatures using multiple TeV measured energy spectra.
 - We are studying the potential to test / constrain LIV signatures with HAWC, SGSO and CTA

- I. Lorentz invariance violation (LIV)
- II. Limits: TeV γ -rays
 - i. Time Energy Dependent delay
 - ii. Photon Decay
 - iii. Pair production threshold shifts

III. UHECR

- i. GZK-photons + LIV
- ii. Limits

GZK photons + LIV

$$\frac{dN}{dE_s} = \begin{cases} E_s^{-\Gamma}, & \text{for } R_s < R_{\text{cut}} \\ E_s^{-\Gamma} e^{1 - R_s/R_{\text{cut}}}, & \text{for } R_s \geqslant R_{\text{cut}} \end{cases}$$

- 1. *C*₁: Aloisio et al. (2014);
- 2. C₂: Unger, Farrar, & Anchordoqui (2015)—Fiducial model (Unger et al. 2015);
- 3. C_3 : Unger et al. (2015) with the abundance of galactic nuclei from (Olive & Group 2014);
- 4. C₄: Berezinsky, Gazizov, & Grigorieva (2007)—Dip model (Berezinsky et al. 2006).

Model	Г	$\log_{10}(R_{\rm cut}/V)$	fH	fHe	fN	fSi	fFe
C_1	1	18.699	0.7692	0.1538	0.0461	0.0231	0.00759
C_2	1	18.5	0	0	0	1	0
C_3	1.25	18.5	0.365	0.309	0.121	0.1066	0.098
C_4	2.7	∞	1	0	0	0	0

Parameters of the Four Source Models Used in This Paper

Note. Γ is the spectral index, R_{cut} is the rigidity cutoff and fH, fHe, fN, fSi, and fFe are the fractions of each nuclei.

Models of Source Distribution

- 1. **R**₁: sources are uniformly distributed in a comoving volume;
- 2. **R**₂: sources follow the star formation distribution given in Hopkins & Beacom (2006). The evolution is proportional to $(1 + z)^{3.4}$ for z < 1, to $(1 + z)^{-0.26}$ for $1 \le z < 4$ and to $(1 + z)^{-7.8}$ for $z \ge 4$;
- 3. **R**₃: sources follow the star formation distribution given in Yüksel et al. (2008). The evolution is proportional to $(1+z)^{3.4}$ for z < 1, to $(1+z)^{-0.3}$ for $1 \le z < 4$ and to $(1+z)^{-3.5}$ for $z \ge 4$;
- 4. R_4 : sources follow the GRB rate evolution from Le & Dermer (2007). The evolution is proportional to $(1 + 8z)/[1 + (z/3)^{1.3}]$;
- 5. **R**₅: sources follow the GRB rate evolution from Le & Dermer (2007). The evolution is proportional to $(1 + 11z)/[1 + (z/3)^{0.5}]$.

Models of Source Distribution

- 1. **R**₁: sources are uniformly distributed in a comoving volume;
- 2. **R**₂: sources follow the star formation distribution given in Hopkins & Beacom (2006). The evolution is proportional to $(1 + z)^{3.4}$ for z < 1, to $(1 + z)^{-0.26}$ for $1 \le z < 4$ and to $(1 + z)^{-7.8}$ for $z \ge 4$;
- 3. **R**₃: sources follow the star formation distribution given in Yüksel et al. (2008). The evolution is proportional to $(1+z)^{3.4}$ for z < 1, to $(1+z)^{-0.3}$ for $1 \le z < 4$ and to $(1+z)^{-3.5}$ for $z \ge 4$;
- 4. R_4 : sources follow the GRB rate evolution from Le & Dermer (2007). The evolution is proportional to $(1 + 8z)/[1 + (z/3)^{1.3}]$;
- 5. **R**₅: sources follow the GRB rate evolution from Le & Dermer (2007). The evolution is proportional to $(1 + 11z)/[1 + (z/3)^{0.5}]$.

(Settimo & Domenico 2015; Batista et al. 2016)

Lang, Martinez & De Souza ApJ 853, no.1, 23 (2018)

humbertomh@ifsc.usp.br

Integral flux of GZK photons + LIV

Different LIV coefficients result in a shift up an down
- I. Lorentz invariance violation (LIV)
- II. Limits: TeV γ -rays
 - i. Time Energy Dependent delay
 - ii. Photon Decay
 - iii. Pair production threshold shifts

III. UHECR

i. GZK-photons + LIV

ii. Limits

Z-burst

SHDM I

ERVATORY

TD

TSD 2015

^{10²⁰ E₀ [eV]}

GZK proton I

GZK proton II

10¹⁹

upper limits 95% CL

Integral photon flux E₁ > E₀ [km⁻² sr⁻¹ yr⁻¹] 00 01

GZK photon flux + LIV

GZK photon flux + LIV

Model C₃R₅ was shown to (best) describe the energy spectrum, composition, and arrival direction of UHECR*

*M. Unger et al 2015, Phys. Rev. D, 92, 123001

humbertomh@ifsc.usp.br

Model	$\delta_{\gamma,0}^{ m limit}$	$\delta_{\gamma,1}^{\text{limit}}(\text{eV}^{-1})$	$\delta_{\gamma,2}^{\text{limit}}(\text{eV}^{-2})$
$\overline{C_1R_5}$	$\sim -10^{-20}$	$\sim -10^{-38}$	$\sim -10^{-56}$
$C_2 R_5$			
C_3R_5	${\sim}{-10}^{-20}$	$\sim -10^{-38}$	$\sim -10^{-56}$
C_4R_5	$\sim -10^{-22}$	$\sim -10^{-42}$	$\sim -10^{-60}$

Limits on the LIV Coefficients Imposed by This Work for Each Source Model and LIV Order (*n*)

Limits on the LIV Coefficients Imposed by Other Works Based on Gamma-Ray Propagation

Model	$\delta^{ m limit}_{\gamma,0}$	$\delta_{\gamma,1}^{\text{limit}}(\mathrm{eV}^{-1})$	$\delta_{\gamma,2}^{\text{limit}}(\mathrm{eV}^{-2})$
Galaverni & Sigl (2008a)		-1.97×10^{-43}	-1.61×10^{-63}
H.E.S.S.—PKS 2155–304 (2011) Fermi—GRB 090510 (2013) H.E.S.S.—Mrk 501 (2017)	 	$\begin{array}{r} -4.76 \times 10^{-28} \\ -1.08 \times 10^{-29} \\ -9.62 \times 10^{-29} \end{array}$	$\begin{array}{r} -2.44 \times 10^{-40} \\ -5.92 \times 10^{-41} \\ -4.53 \times 10^{-42} \end{array}$

Model	δ^{limit}	$\delta^{\text{limit}}_{\text{rev}}(\text{eV}^{-1})$	$\delta_{\rm max}^{\rm limit} (eV^{-2})$	
\overline{CR}	$\gamma_{,0}$	$\gamma_{\gamma,1} (0, 1)$	$\frac{10^{-56}}{2}$	
$C_1 R_5$ $C_2 R_5$	~−10 	~−10 	~−10 …	
C_3R_5	$\sim -10^{-20}$	$\sim -10^{-38}$	$\sim -10^{-56}$	
C_4R_5	$\sim -10^{-22}$	$\sim -10^{-42}$	$\sim -10^{-60}$	

Limits on the LIV Coefficients Imposed by This Work for Each Source Model and LIV Order (*n*)

Limits on the LIV Coefficients Imposed by Other Works Based on Gamma-Ray Propagation

Model	$\delta^{ m limit}_{\gamma,0}$	$\delta_{\gamma,1}^{\text{limit}}(\mathrm{eV}^{-1})$	$\delta_{\gamma,2}^{\text{limit}}(\mathrm{eV}^{-2})$
Galaverni & Sigl (2008a)		-1.97×10^{-43}	-1.61×10^{-63}
H.E.S.S.—PKS 2155–304 (2011) Fermi—GRB 090510 (2013) H.E.S.S.—Mrk 501 (2017)	···· ···	$\begin{array}{r} -4.76 \times 10^{-28} \\ -1.08 \times 10^{-29} \\ -9.62 \times 10^{-29} \end{array}$	$\begin{array}{r} -2.44 \times 10^{-40} \\ -5.92 \times 10^{-41} \\ -4.53 \times 10^{-42} \end{array}$

- * We studied the effect of possible LIV in the propagation of photons in the universe.
- The mean-free path of the pair production interaction was calculated considering LIV effects.
- ✤ We found that even moderate LIV coefficients introduce a significant change in the mean-free path of the interaction.
- ✤ The GZK photon flux including LIV was obtained for different source models and source distribution models.
- Limits to the LIV coefficient were established based on source models compatible with the most updated data of UHECR.
- The limits presented here are several orders of magnitude more restrictive than previous calculations based on the arrival time of TeV photons; however, the comparison is not straightforward due to different systematics of the measurements and energy of the photons.

Thanks!