The light component of the cosmic ray spectrum measured with HAWC

Overview

- 1. The HAWC observatory
- 2. Cosmic rays a HAWC
- 3. Motivations
- 4. Cosmic ray observables
- 5. MC simulations and selection cuts
- 6. Performance
- 7. The path to the all particle spectrum
- 8. Composition

- On a plateu between Pico de Orizaba and Sierra Negra volcanoes, Puebla, Mexico
- 19° N and 97° W
- 4100 m a.s.l. (640 g/cm²)

- 22 000 m² surface
- 300 densely packed water Cherenkov detectors

Sierra Negra

4580 m

a.s.l.

HAWC - Cosmic ray composition

Reunión de la División de Rayos cósmicos de la SMF, Puebla, October, 2018 4

200,000 *l* purified water

- 4 Photomultiplier tubes (PMTs)
- Detect Cherenkov light from relativistic charged particles

Pico de Orizaba 5636 m a.s.l.

Sierra Negra 4580 m a.s.l.

HAWC - Cosmic ray composition

Reunión de la Division - Pavos cósmicos de la SMF, Puebla, October, 2018

Gamma-ray detector

- Designed to study gamma ray sky
- Primary energy interval
 E = 100 GeV 100 TeV

- Instantaneous field of view 2 sr
- Duty cycle > 95 %

Cosmic rays at HAWC

Scaler mode: Through enhancements in the PMT rates

TDC mode: Study PMT's hit in EAS event

- CR EAS energy interval:
 - 100 GeV 1 PeV
- 99.9 % of events are hadronic
- Trigger rate: 25 kHz
- CR rate @ E = 1 TeV:
 - + 10³ times greater than flux of the brightest γ-ray source

S. BenzVi, D. Fiorino, et al., ICRC 2015, #216 A. Smith, ICRC 2015, #397

Motivation

Motivation

Hillas (H3a) model

T.K. Gaisser, Astrop. Phys. 35 (2012) 80; Frontiers of Physics 8 (2013)

- Three cosmic populations
- Knees and other features produced by loss of magnetic confinement.

$$\phi_i(E) = \Sigma_{j=1}^3 a_{i,j} E^{-\gamma_{i,j}} \times \exp\left[-\frac{E}{Z_i R_{c,j}}\right].$$

- Population 1: SNR (E_{max} ~100 TeV)
- Population 2: Galactic pevatron (PWN, hypernovae, galactic center, etc.)
- Population 3: Extragalactic origin.

Source	Rc (GV)
Population 1	1.2 x 10 ⁵
Population 2	4.0 x 10 ⁶
Population 3	1.3 x 10 ⁹

HAWC measurements performed after Xmax

hit time [ns]

From deposited charged,
 hit times at PMTs, number
 of PMT's with signal:

- Core location, (X_c, Y_c)
- Arrival direction, θ
- Fraction of hit PMT's, f_{hit}
- Lateral age of LDF, s
- Energy of primary, E

HAWC Coll., ApJ 843 (2017) 39

- Lateral age parameter:
 - Obtained event-by-event
 - Fit wit NKG-based function:

 $f_{ch}(r) = A \cdot (r/r_0)^{s-3} \cdot (1 + r/r_0)^{s-4.5}$ with $r_0 = 124.21$ m.

A, s are free parameters

Kelly Malone, APS 2017

Energy estimation

Maximum likelihood for hits to come from distance, charge, zenith, energy bins.

MC simulations

HAWC - Cosmic ray composition

 Θ

 Θ

0

0

Reunión de la División de Rayos cósmicos de la SMF, Puebla, October, 2018 13

Selection cuts

- Selected to reduce systematic effects on Energy:
 0 < 16.71°
 - Multiplicity threshold $N_{hit} \ge 75 \text{ PMTs}$
 - Successful core and arrival direction reconstruction
 - Activate at least 60 PMTs within 40 m from core $N_{r40} \ge 60$
 - Shower core inside HAWC area
 - Fractionhit (# of hit PMT's/# available channels) ≥ 0.3
 - Core bias Run 4016, TS 13, Ev# 457, CXPE40= 112, RA= 255.7, Dec= 15.9 Δ R (m) E 320 nit time [ns ~10 TeV All 35 O H 300 □ He 30 80 △ Fe 280 260 240 15 40 220 200 180 0 3.5 5.5 4.5 5 120 100 x [m] log₁₀(E/GeV)

E ≥ 10 TeV:	
$\Delta core_{res}$	≤ 10 m
∆log ₁₀ (E/GeV)	≤ 0.12
$\Delta \theta_{res}$	≤ 0.3 °

Selection cuts

E ≥ 10 TeV:	
$\Delta core_{res}$	≤ 10 m
∆log ₁₀ (E/GeV)	≤ 0.12
$\Delta \theta_{\rm res}$	≤ 0.3 °

Selection cuts

HAWC - Cosmic ray composition

Reunión de la División de Rayos cósmicos de la SMF, Puebla, October, 2018 16

Selection of sample enriched with light nuclei

Build the raw energy histogram of subsample, N_{raw}(E)

Not corrected for efficiency/migration effects

Correct N_{raw}(E) for migration effects by unfolding

Unfolding:

Response Matrix

Estimate effective area of the subsample and correct for heavy nuclei

Get energy spectrum from N^{Unf} and effective area

- Energy spectrum was calculated as:

 $\Phi = N^{Unf}(E^{T})/(\Delta t \cdot \Delta \Omega \cdot A_{eff}(E^{T}) \cdot \Delta E^{T})$

Measured data

H+He

23

Unfolded HAWC spectrum

Unfolded HAWC spectrum

Statistical and systematic uncertainties

log₁₀(E/GeV) = 4.95

	Relative error Φ (%)
Statistical	+/- 3.3
Exp. Data	+/- 0.1
Response matrix	+/- 3.3
Systematic	+13.7/-16.3
Composition	-14.7
Aeff	+6.7/- 5.8
Cut at He or C	-3.9
Gold unfolding	-0.3
Seed unfolding	-0.7
Smoothing unfold.	-1.1
Bin size	-1.2
PMT Qeff	+11.4
PMT Qres	+3.5
Total	+14.1 /-16.7

H+He

Unfolded HAWC spectrum

H+He

Fit of spectrum

- **1.** Use following functions:
 - --> Single power law:

$$\frac{\mathrm{d}\Phi(E)}{\mathrm{d}E} = \Phi_0 \ E^{\gamma_1}$$

--> Double power law:

$$\frac{\mathrm{d}\Phi(E)}{\mathrm{d}E} = \Phi_0 \ E^{\gamma_1} \left[1 + \left(\frac{E}{E_{\mathrm{knee}}}\right)^{\varepsilon} \right]^{(\gamma_2 - \gamma_1)/\varepsilon}$$

2. Minimize χ^2 with MINUIT and take into account correlation between points:

$$\chi^{2} = \sum_{i,j} \left[\Phi_{i}^{\text{data}} - \Phi^{\text{fit}}(\mathsf{E}_{i}) \right] \left[V_{\text{stat}}^{\text{Tot}} \right]^{-1}_{ij} \left[\Phi_{j}^{\text{data}} - \Phi^{\text{fit}}(\mathsf{E}_{j}) \right]$$
PDG (2017)

Fit of spectrum

Results of parameters for the double power-law fit: $\gamma_1 = -2.51 \pm 0.05$ $\gamma_2 = -2.77 \pm 0.04$ $\Delta \gamma = -0.26 \pm 0.06$ $log_{10}(E_{knee}/GeV) = 4.47 \pm 0.13$

Check performance of method with MC simulations

Use **MC simulations** following the CREAM-II model, but **with a kink** in the light component of CR's:

H+He

 $log_{10}(E_{knee}/GeV) \sim 4.5$

The kink is reconstructed

The reconstructed $\Delta \gamma$ is smaller than the actual one due to contamination from the heavy component.

Conclusion

- The lateral age parameter is sensitive to the composition of cosmic rays at HAWC.
- A first analysis of cosmic ray composition with HAWC has allowed to reconstruct the spectrum of the light component (H+He) of cosmic rays in the range E = [10, 158] TeV.
- The reconstructed spectrum of H+He shows a knee ($\Delta \gamma = -0.26 \pm 0.06$) • E = 30⁺¹⁰-8 TeV.
- Studies on the heavy component of cosmic rays are also underway.

Backup slides

γ /hadron separation

Separate gamma-ray events from background using distribution of charged deposition

Run 2054, TS 584212, Ev# 226, CXPE40= 21.2, Cmptness= 28.3

γ: compact cores/smoothed distribution

Run 2118, TS 45004, Ev# 41, CXPE40= 55.7, Cmptness= 10.7

Hadron: energetic clumps far from core

