

DESY.

DESY 2018 LongSlab MIP spectra fits for different angles

Experimental Setup

Hardware Setup

Mechanical Setup

Data Sets

Name	ASU's	Angle	Place	Particles
ASU Scan 0 deg	1-7	0	DESY	$e^-(3GeV)$
ASU Scan 45 deg	1-7	45	DESY	$e^-(3GeV)$
ASU Scan 60 deg	1-7	60	DESY	$e^-(3GeV)$
Full Angular Scan	8	0-45	DESY	$e^-(3GeV)$
Cosmic No RC (6-7)	1-8	?	LLR	Cosmic
Cosmic RC (6-7)	1-8	?	LLR	Cosmic
Cs137 ASUxThr Scan	1-8	?	LLR	$\gamma(662 keV)$

Ο

My task : MIP fit Analyses 💵

- MIP Position Study
- Muon Run study
- Tigger Level Study
- Pedestal Study
- Cs137 Trigger level study
- Geant4 Simulation

common_calib_ls_ASU1_angle0_dif_1_1_1.raw

MIP spectrum Study How do we fit it?

Langaus (Landau convoluted with Gauss) Fit 💵 🗩

Angle != 0 -> Some tracks cross two pixels 🏟

Pixel energy fraction depends linearly on crossing position

- Distributed energy proportional to track length in cell
- Uniform beam profile across pixel
- Field lines in silicon are perpendicular to it surface. No boundary effects. 2D picture.

Fitting function Step 1 - Build Landau dE/dx Histogram 📗 🎝

Landau

9

St	ep 2	- (hose	bin

landau modification Step 4 - same procedure for all bins 📠 🍄🌣

Landau

Geant4 Simulation

Simulation from Vincent for Cs137 source.

Modifications:

- Detector changed from tube to box
- 662 keV gamma changed to 3 GeV e-
- Changed detector rotation algorithm
- Geant 4.9.4

Flat left plateau is ideal for trigger threshold determination

Gauss Spread

Landau

LandauHist

Fit with Mod LanGau function 🛛 😪

common_calib_ls_ASU4_angle60_dif_1_1_1.rawCh4

Thrashold level search

Thrashold through ASU

19

MP from ASU

Low Energy Region Non Linearity Response

ASU MIP position drop cosmics test

MP ASU

ASU MIP position drop cosmics test + RC

MP ASU

Pedestal Study, Single ASU, Single Channel, Single SCA, Angle = 0

common_calib_ls_ASU5_angle0_dif_1_1_1.raw_Channel_57_sca_1

Position of Gaussian centre

27

Sigma distribution

Sigma distribution Profile

Sigma distribution by channel

SigmaChannel

ASU 1-7 +8*,Median of the Sigma of the Pedestal, Angle = 0, Connected Channels

PedistaConnASU

Done & Found

- MIP position drop
- Low energy region non-linearity
- Cosmic test
- Pedestal study

To do list

Summary

- Pedestal study with more
 - statistics
- More detail Geant simulation
- Master thesis