Journée Double Bêta France September 4th, 2018 APC, Paris

CUPID

Andrea Giuliani

(on behalf of the bolometric Double Beta Decay community in France)

Objective

Build a **word-leading** next-generation experiment on $0\nu\beta\beta$ decay: **CUPID**

Objective

Build a word-leading next-generation experiment on $0\nu\beta\beta$ decay: CUPID

Context

- International collaboration (France, Italy, US, China...)
- Drive and leadership role

from France

+

+

=

Objective

Build a word-leading next-generation experiment on $0\nu\beta\beta$ decay: CUPID

How to reach this objective:

R&D on LMO technology

CUORE infrastructure +

Demonstrators

Enrichment/Crystallization

Context

- International collaboration (France, Italy, US, China...)
- Drive and leadership role from France

Li₂¹⁰⁰MoO₄ scintillating bolometers developed in **ANR LUMINEU** (2012-2017)

CUORE is taking data in LNGS: successful implementation of 1 ton bolometric mass

Test of the technology at the ~20 kg scale **CUPID-Mo** is installed in LSM – two more setups in LNGS, LSC (**ERC CROSS** (2018-2022)

Russian companies

Encouraging results in France with crystals from **ANR CLYMENE** (2016-2020)

╋

+

=

Objective

Build a word-leading next-generation experiment on $0\nu\beta\beta$ decay: CUPID

How to reach this objective:

R&D on LMO technology

CUORE infrastructure +

Demonstrators

Enrichment/Crystallization

Context

- International collaboration (France, Italy, US, China...)
- Drive and leadership role from France

Li₂¹⁰⁰MoO₄ scintillating bolometers developed in Arr AINEU (2012-2017) CUORE is tak Control LNGS: successful implementation of 1 ton bolometric mass Test of the technol 20 kg scale

CUPID-Mo setups in LN PRESERVE and two more creations (2018-2022)

Russian companies Encouraging FUTURE with crystals from ANR FUTURE 16-2020)

Outline

- > Challenges in $0\nu 2\beta$ decay and the CUPID way
- Scintillating bolometers and ¹⁰⁰Mo
- \succ Results with Li₂¹⁰⁰MoO₄ crystals
- Demonstrators: CUPID-Mo and CROSS
- CUORE and its background model
- Mo-based CUPID

Outline

- \succ Challenges in $0v2\beta$ decay and the CUPID way
- > Scintillating bolometers and ¹⁰⁰Mo
- \succ Results with Li₂¹⁰⁰MoO₄ crystals
- Demonstrators: CUPID-Mo and CROSS
- CUORE and its background model
- Mo-based CUPID

Standard mechanism: $m_{\beta\beta}$ vs. lightest v mass

Current-generation experiments

Next-generation experiments

Next-generation experiments

Next-generation experiments

What we are looking for

The shape of the two-electron sum-energy spectrum enables to distinguish between the 0v (new physics) and the 2v decay modes

Outline

- > Challenges in $0\nu 2\beta$ decay and the CUPID way
- Scintillating bolometers and ¹⁰⁰Mo
- \triangleright Results with Li₂¹⁰⁰MoO₄ crystals
- Demonstrators: CUPID-Mo and CROSS
- CUORE and its background model
- Mo-based CUPID

How we do it: bolometers

CUORE-technology lessons about background

CUORE and its precursors are affected by alpha particle background

Improvement by a factor 10² is required

Current solution: scintillating / Cherenkov bolometers

Alpha / beta separation

Alphas emit a different amount of light with respect to **beta/gamma** of the same energy (normally lower $\rightarrow \alpha$ QF < 1, but not in all cases – ZnSe is an exception).

A scatter plot light vs. heat or a plot light-yield vs. heat) separates alphas from betas / gammas.

PSD can work as well

A bolometric light detector is needed, facing the main crystal

Some properties of ¹⁰⁰Mo

>
$$T_{1/2}(2v) = 6.9 \times 10^{18} \text{ y} - \text{the fastest one in all } 0v2\beta$$
 candidates

²¹⁴Bi line at 3054 keV – B.R. 0.021 % - Compton edge 2818 keV

Mo vs other isotopes

Useful Mo-based crystals

Crystals succesfully tested so far as scintillating bolometers:

CdMoO₄ PbMoO₄ SrMoO₄ CaMoO₄ ZnMoO₄ Li₂MoO₄

AMoRE

Drawbacks:

- Necessity of ⁴⁸Ca depletion
 - Radiopurity (difficult to purify Ca from U, Th, Ra)

LUMINEU

Initial choice (2012): ZnMoO₄

First tests on large Li₂MoO₄ crystals: spring 2014

Astropart. Phys. 72, 38 (2016)

LUMINEU: Selection of Li₂MoO₄ for a pilot experiment (March 2016)

- Better bolometric performance
- Easy crystallization / excellent quality
- Outstanding radiopurity

Caveats

- > Hygroscopic material
- ⁴⁰K is natural contaminant
- Lower light yield (~0.8 keV/MeV)

Preparing a ¹⁰⁰Mo experiment: LUMINEU

Funding / resources from

- ANR (France) main fund provider (LUMINEU: 2012-2017)
- CEA-Saclay substantial funds / PhD
- CSNSM direction funds for crystals (« AP interne »)
- EDELWEISS underground facility, electronics & DAQ
- IN2P3 dedicated personnel
- ▶ KINR Kiev radiopure scintillator know-how, simulation, enriched ¹⁰⁰Mo
- ITEP Moscow enriched ¹⁰⁰Mo
- NIIC Novosibirsk crystals
- INFN / LUCIFER underground facility and manpower for R&D

AGENCE NATIONALE DE LA RECHERCH

Extension of the Mo collaboration: CUPID-Mo

Li₂MoO₄: purification and crystallization

From 2013 to 2016, a series of important milestones were achieved:

- Mo purification / crystallization protocol (NIIC, Novosibirsk, Russia) (Mo irrecoverable losses < 4%)</p>
- Selection of the appropriate Li₂CO₃ powder for compound formation
- Successful program to control internal content of ⁴⁰K [(from ~60 mBq/kg to < 5 mBq/kg)</p>

 \rightarrow Random coincidences: $2\nu 2\beta$ + 40 K << $2\nu 2\beta$ + $2\nu 2\beta$

Efficient use of existing ~10 kg of ¹⁰⁰Mo (~9 kg to ITEP-Moscow and ~1 kg to KINR-Kiev) (MoU among IN2P3 / INFN / ITEP – February 2015)

Natural isotopic abundance: 9.7%

NIM A 729, 856 (2013) JINST 9, P06004 (2014) EPJC 74, 3133 (2014) JINST 10, P05007 (2015)

EDELWEISS-III cryogenic facility at LSM (France)

Laboratoire Souterrain de Modane 1.7 km rock overburden (~4.8 km w.e.) 5 $\mu/day/m^2$; 10⁻⁶ n/day/cm² (>1 MeV) Deradonized air flow (~30 mBq/m³)

EDELWEISS set-up

Clean room (ISO Class 4)

³He/⁴He inverted wet cryostat

Passive shield

Modern lead (18 cm) Roman lead (2 cm; 14 cm at 1 K plate) Polyethylene (external ~ 50+5 cm and 10 cm at 1 K plate)

Background monitors

Muon veto (98.5% covering) Neutron counter Radon counter

Electronics, DAQ (Samba)

Low noise cold electronics AC bias, modulation (100 kHz) → demodulation (up to 1 kHz) 16-bit or 14-bit ADC Trigger and/or Stream data

PLB 702 (2011) 329; JINST 12 (2017) P08010; EPJC 77 (2017) 785

D. Poda 24

Tests of Li₂¹⁰⁰MoO₄ scintillating bolometers

D. Poda

²³²Th calibration

D. Poda ²⁶

Heat channel

Heat channel

D. Poda 27

17

4 Li₂¹⁰⁰MoO₄ detector array

D. Poda 28

Heat + Light

LUMINEU: search for 2β decay of ¹⁰⁰Mo

<i>Τ</i> _{1/2} [10 ¹⁸ yr]	¹⁰⁰ Mo exposure	Experiment	Ref.
7.11±0.02(stat)±0.54(syst)	7.37 kg×yr	NEMO-3	PRL 95, 182302 (2005)
7.15±0.37(stat)±0.66(syst)	0.01 kg×yr	LUCIFER*	JPG 41, 075204 (2014)
6.90±0.15(stat)±0.37(syst)	0.02 kg×yr	LUMINEU	EPJC 77, 785 (2017)

Data with higher statistics are available

CUPID-Mo paper in preparation

D. Poda 29

Li₂¹⁰⁰MoO₄ scintillating bolometers: a mature technology

LUMINEU has succesfully developed the Li₂¹⁰⁰MoO₄ technology

Multiple tests with natural and enriched crystals (2014-2017) in LSM and LNGS with outstanding results in terms of:

- Reproducibility Energy resolution \rightarrow α/β separation power \rightarrow Internal radiopurity
- excellent performance uniformity
 - ~ 4-6 keV FWHM in Rol
 - > 99.9 %

 \rightarrow

 \rightarrow

< 5 μ Bq/kg in ²³²Th, ²³⁸U; < 5 mBq/kg in ⁴⁰K

Compatible with b ≤ 10⁻⁴ [counts/(keV kg y)]

Outline

- > Challenges in $0\nu 2\beta$ decay and the CUPID way
- > Scintillating bolometers and ¹⁰⁰Mo
- \succ Results with Li₂¹⁰⁰MoO₄ crystals
- Demonstrators: CUPID-Mo and CROSS
- CUORE and its background model
- Mo-based CUPID

The CUPID-Mo demonstrators

CUPID-Mo Phase I (20 crystals)

- 20 ¹⁰⁰Mo-enriched (97%) Li₂MoO₄ (Ø44×45 mm, 0.21 kg each; 4.18 kg total)
 ⇒ ~2.5 kg of ¹⁰⁰Mo
- > 20 Ge light detectors (Ø44×0.175 mm)+SiO
- EDELWEISS set-up @ LSM (France)

COMMISSIONING May - June 2018

CUPID-Mo Phase II (20+26 crystals)

- Additional **26 cubic Li_2^{100}MoO_4** (45x45x45 mm, 0.28 g each)
 - \Rightarrow ~4 kg of ¹⁰⁰Mo
- CUPID-0 set-up @ LNGS (Italy)

PLANNED START DATA TAKING: mid 2019

The CUPID-Mo Modane array (Phase I)

Suspension

Background consideration for CUPID-Mo Modane (Phase I)

Background index in the CUPID-Mo **prototypes**

This value is compatible with the presence of ²³²Th-contaminated connectors close to the detectors

 \rightarrow b = 0.06(3) c/(keV kg y)

Simultaneous absorption of **2615 keV** γ and coincident **583 keV** γ (²⁰⁸Tl)

The contaminated connectors were substantially reduced for the CUPID-Mo run (improvement by ÷10 is expected)

Full estimation of the background is in progress

Reasonable expectation: b ~ 10⁻² – 10⁻³ c/(keV kg ys)

CUPID-Mo Modane (Phase I) Evolution of the half-life sensitivity

35

CUPID-Mo Modane (Phase I) Preliminary results at 22 mK

Long delay of the run start due to cryogenics (Nov 2017 \rightarrow Apr 2018) Preliminary data acquired at 22 mK

- Large microphonic noise, related in part to persisting cryogenic problems
- 2 heat channels are lost

Calibration with thorite source – Th + U

CUPID-Mo Modane (Phase I) Preliminary results at 22 mK

CUPID-Mo Modane (Phase I) Preliminary results at 22 mK

- Cryostat failure forced us to stop the run at Agust 7th, 2018
- Maintenance of the cryostat is now ongoing
- Run resume is foreseen for this fall

CUPID-Mo LNGS (Phase II)

Single CUORE-like tower with 4 elements in each floor

- 7 floors × 4 crystals/floor = 28 enriched crystals in total
- 26 enriched and 2 natural crystals
- > Total mass: $28 \times 280 \text{ g} \rightarrow 4.1 \text{ kg of } ^{100}\text{Mo}$

14 crystals already delivered 12 expected in November 2018 Mechanics tests are ongoing

Installation in LNGS is foreseen at mid-2019, below the CUPID-0 experiment First bi-isotope search with bolometers

Beyond light detectors: CROSS

ERC advanced grant CROSS (2018-2022)

Cryogenic Rare-event Observatory with Surface Sensitivity

CROSS develops an innovative bolometric technology to search for 0v-DBD

Core of the project (high risk / high gain)
Background rejection through pulse shape discrimination

- Surface sensitivity through superconductive Al film coating
- Fast NbSi high-impedance TES to replace / complement NTDs if necessary

get rid of light detectors

- ➢ Complete crystallization of available ¹⁰⁰Mo (10 kg) in Li₂MoO₄ elements → CUPID-Mo demonstrator in LNGS (Phase II)
- Purchase / crystallize ¹³⁰Te (up to 10 kg) in TeO₂ elements
 - Run demonstrator in a dedicated cryostat (LSC Spain)

Encouraging preliminary results

Above-ground tests (CSNSM) with **20x20x10 mm Li₂MoO₄** and **TeO₂ crystals**

Alphas impacting on the film side are clearly discriminated

CROSS demonstrator in LSC

Dilution refrigerator on construction (French company CRYOCONCEPT)

- 10 mk base temperature
- Cylinder \emptyset 30cm × h60cm experimental volume
- Antivibration system
- 180 electronics channels
- Passive shielding (lead, polyethilene) and muon veto

Commissiong: April 2019

Outline

- > Challenges in $0\nu 2\beta$ decay and the CUPID way
- > Scintillating bolometers and ¹⁰⁰Mo
- \succ Results with Li₂¹⁰⁰MoO₄ crystals
- Demonstrators: CUPID-Mo and CROSS
- CUORE and its background model
- Mo-based CUPID

CUORE

CUORE is an array of TeO₂ bolometers searching for $0\nu 2\beta$ decay of the isotope ¹³⁰Te and taking data in LNGS (Italy)

The largest bolometric experiment ever

> 988 crystals 5x5x5 cm, closely packed

- Arranged in 19 towers of 13 floors each
- ➤ 742 kg (206 kg of ¹³⁰Te)
- Background according to expectations: 1.4±0.2×10⁻² c/(keV·kg·yr)
- ➢ Energy resolution close to expectations: ~7.7 keV FHWM
 → margins for improvement

One of the most sensitive $0\nu 2\beta$ experiments of the current generation

Current limit (¹³⁰Te
$$T_{1/2}^{0v2\beta}$$
) : > **1.5** × **10**²⁵ y

m_{ββ} < 110 – 520 meV (90% C.L.) *Phys. Rev. Lett. 120, 132501 (2018)*

 $m_{\beta\beta} < 60 - 165 \text{ meV}$

CUORE is not background free

→ ~50 counts/y in the ROI, dominated by surface alpha background

$CUORE \rightarrow CUPID$

Three important messages from CUORE

- 1. A tonne-scale bolometric detector is technically feasable
- 2. Analysis of ~1000 individual bolometers is handable
- 3. An infrastructure to host a bolometric next-generation $0\nu\beta\beta$ experiment is already available

It is time to work on CUPID, the natural evolution of CUORE

CUPID (CUORE Upgrade with Particle ID) is a proposed $0\nu2\beta$ bolometric experiment exploiting the CUORE infrastructure and with a background 100 times lower at the ROI

Prospects for CUPID

The purpose of CUPID is to fully explore the IO region

Mission: half-life sensitivity higher than 10^{27} y arXiv:1504.03599 With background < 0.1 counts/(ton y) in the ROI, ¹⁰⁰Mo sensitivity is 2.1x10²⁷ y m_{BB} < 6 - 17 meV

- CUPID collaboration will be formed in the near future
- CUPID kick-off meeting is being planned in November 2018

Fitting the CUORE Background

Able to reconstruct the major features of the observed spectrum in CUORE

NEUTRINO 2018, Heidelberg, Germany

J. Ouellet

48 June 6, 2018

Background Model Contamination Levels (Very Preliminary!)

Outline

- > Challenges in $0\nu 2\beta$ decay and the CUPID way
- > Scintillating bolometers and ¹⁰⁰Mo
- \geq Results with Li₂¹⁰⁰MoO₄ crystals
- Demonstrators: CUPID-Mo and CROSS
- CUORE and its background model

Mo-based CUPID

Possible configurations in CUPID

Single element	Number of elements	Isotope mass [kg]		Number of ¹⁰⁰ Mo nuclei		
50×50×50 mm – 380 g	1150			. 1 4×10 ²⁷		
<mark>─</mark> 45×45×45 mm – 280 g	1600	~250		~1.4×10		
 Same size as in CUORE Already achieved size in the R&D 						
Background [counts/(keV kg y)]	Number of BKG counts [5 keV, 10 y]	Count limit Feldman Cousins [90% c.l.]	Half life lir [y] [90% c.l.	nit M _{ββ} [meV]]		
1 × 10 ⁻⁴	2.2	4.1	1.8×10^{2}	²⁷ 6.6 – 19		

Next generation experiment \rightarrow cover completely the inverted ordering region

CUPID reach

Final considerations

