Towards reliable nuclear matrix elements for neutrinoless $\beta\beta$ decay

Frédéric Nowacki

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Nuclear physics and neutrinoless $\beta\beta$ decay

Neutrinos, dark matter studied in experiments using nuclei

Nuclear matrix elements depend on nuclear structure crucial to anticipate reach and fully exploit experiments

$$0
uetaeta$$
 decay: $[T^{0
u}_{1/2}]^{-1}\propto |M^{0
u}|^2\langle m_
u
angle^2$

Dark matter:

$$rac{d\sigma_{\chi}\mathcal{N}}{da^2} \propto |\sum_i \mathbf{C}_i \zeta_i \mathcal{F}_i|^2$$

 $M^{0\nu}$: Nuclear matrix element \mathcal{F}_i : Nuclear structure factor

Neutrinoless $\beta\beta$ decay

Lepton-number violation, Majorana nature of neutrinos Second order process only observable in rare cases with β -decay energetically forbidden or hindered by ΔJ

Present best limits $T_{1/2}^{0\nu} \gtrsim 10^{25}$ y.: ⁷⁶Ge (GERDA, Majorana), ¹³⁰Te (CUORE), ¹³⁶Xe (EXO, KamLANDZen)

Next generation experiments: inverted hierarchy

The decay lifetime is $[T_{1/2}^{0\nu}(0^+ \to 0^+)]^{-1} = G_{0\nu}|M^{0\nu}|^2 \langle m_{\nu}^{\beta\beta} \rangle^2$ sensitive to absolute neutrino masses, $\langle m_{\nu}^{\beta\beta} \rangle = \sum_i U_{ei}^2 m_i$

KamLAND-Zen, PRL117 082503 (2016)

SQA

Matrix elements needed to make sure next generation ton-scale experiments fully explore "inverted hierarchy", and the second sec $\beta\beta$ decay

Transition	${\it Q}_{\beta\beta}$ (keV)	Abundance $(^{232}Th = 100)$
	2013 2040 2288 2479 2533 2802 2995 3034 3350 3667	12 8 6 9 34 7 9 10 3 6
$Ca \rightarrow II$	4271	0.2

 $\beta\beta$ decay

Transition $Q_{\beta\beta}$ (keV) Abundance $(^{232}Th = 100)$ $^{110}Pd \rightarrow ^{110}Cd$ 2013 12 $^{76}Ge \rightarrow ^{76}Se$ 2040 8 $^{124}Sn \rightarrow ^{124}Te$ 2288 6 136 Xe \rightarrow 136 Ba 2479 9 130 Te \rightarrow 130 Xe 2533 34 $^{116}Cd \rightarrow ^{116}Sn$ 2802 7 $^{82}Se \rightarrow ^{82}Kr$ 2995 9 $^{100}Mo \rightarrow ^{100}Ru$ 3034 10 $^{96}Zr \rightarrow ^{96}Mo$ 3350 3 $^{150}\textit{Nd} \rightarrow ^{150}\textit{Sm}$ 3667 6 $^{48}Ca \rightarrow ^{48}Ti$ 4271 0.2

$(\beta\beta)_{0\nu}$ decay

Specificity of $(\beta\beta)_{0\nu}$:

NO EXPERIMENTAL DATA !!!

prediction for m_{ν} very difficult easier for $m_{\nu}(A)/m_{\nu}(A')$

$(\beta\beta)_{0\nu}$ decay

Specificity of $(\beta\beta)_{0\nu}$:

NO EXPERIMENTAL DATA !!!

prediction for m_{ν} very difficult easier for $m_{\nu}(A)/m_{\nu}(A')$

What is the best isotope to observe $(\beta\beta)_{0\nu}$ decay ?

▲ロト ▲ 聞 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

$(\beta\beta)_{0\nu}$ decay

Specificity of $(\beta\beta)_{0\nu}$:

NO EXPERIMENTAL DATA !!!

prediction for m_{ν} very difficult easier for $m_{\nu}(A)/m_{\nu}(A')$

What is the best isotope to observe $(\beta\beta)_{0\nu}$ decay ?

What is the influence of the structure of the nucleus on $(\beta\beta)_{0\nu}$ matrix elements ?

Calculating nulear matrix elements

Nuclear matrix elements needed to study fundamental symmetries

 $\langle \text{ Final } | \mathcal{L}_{leptons-nucleus} | \text{ Initial } \rangle = \langle \text{ Final } | dx \ j^{\mu}(x) J_{\mu}(x) | \text{ Initial } \rangle$

• Nuclear structure calculation of the initial and final states:

Shell model Retamosa, Caurier, FN... Energy-density functional Rodriguez, Yao... QRPA Vogel, Faesller, Simkovic, Suhonen... Interacting boson model lachello, Barea... Ab Initio many-body methods

Green's Function MC, Coupled-Cluster, IM-SRG

• Lepton-nucleus interaction:

Study hadronic current in nucleus: phenomenological approaches, effective theory of QCD

The theoretical expression of the half-life of the 2ν mode can be written as:

$$[T_{1/2}^{2\nu}]^{-1} = G_{2\nu} |M_{GT}^{2\nu}|^2,$$

with

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle \mathbf{0}_{f}^{+} ||\vec{\sigma}t_{-}||\mathbf{1}_{m}^{+}\rangle\langle \mathbf{1}_{m}^{+}||\vec{\sigma}t_{-}||\mathbf{0}_{i}^{+}\rangle}{E_{m} + E_{0}}$$

• $G_{2\nu}$ contains the phase space factors and the axial coupling constant g_A

The theoretical expression of the half-life of the 2ν mode can be written as:

$$[T_{1/2}^{2\nu}]^{-1} = G_{2\nu} |M_{GT}^{2\nu}|^2,$$

with

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle \mathbf{0}_{f}^{+} ||\vec{\sigma}t_{-}||\mathbf{1}_{m}^{+}\rangle\langle \mathbf{1}_{m}^{+}||\vec{\sigma}t_{-}||\mathbf{0}_{i}^{+}\rangle}{E_{m} + E_{0}}$$

- $G_{2\nu}$ contains the phase space factors and the axial coupling constant g_A
- summation over intermediate states

The theoretical expression of the half-life of the 2ν mode can be written as:

$$[T_{1/2}^{2\nu}]^{-1} = G_{2\nu} |M_{GT}^{2\nu}|^2,$$

with

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle \mathbf{0}_{f}^{+} ||\vec{\sigma}t_{-}||\mathbf{1}_{m}^{+}\rangle\langle \mathbf{1}_{m}^{+}||\vec{\sigma}t_{-}||\mathbf{0}_{i}^{+}\rangle}{E_{m} + E_{0}}$$

- $G_{2\nu}$ contains the phase space factors and the axial coupling constant g_A
- summation over intermediate states
- to quench or not to quench ? ($\sigma \tau_{eff.}$)

The theoretical expression of the half-life of the 2ν mode can be written as:

$$[T_{1/2}^{2\nu}]^{-1} = G_{2\nu} |M_{GT}^{2\nu}|^2,$$

with

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle \mathbf{0}_{f}^{+} ||\vec{\sigma}t_{-}||\mathbf{1}_{m}^{+}\rangle\langle \mathbf{1}_{m}^{+}||\vec{\sigma}t_{-}||\mathbf{0}_{i}^{+}\rangle}{E_{m} + E_{0}}$$

- $G_{2\nu}$ contains the phase space factors and the axial coupling constant g_A
- summation over intermediate states
- to quench or not to quench ? ($\sigma \tau_{eff.}$)
- does a good 2ν ME guarantee a good 0ν ME ?

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle \mathbf{0}_{f}^{+} ||\vec{\sigma}t_{-}||\mathbf{1}_{m}^{+}\rangle\langle\mathbf{1}_{m}^{+}||\vec{\sigma}t_{-}|| \mathbf{0}_{i}^{+}\rangle}{E_{m} + E_{0}}$$

< ロ > < 目 > < 目 > < 目 > < 目 > < 回 > < ○ < ○

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} ||\vec{\sigma}t_{-}||1_{m}^{+}\rangle\langle 1_{m}^{+}||\vec{\sigma}t_{-}||0_{j}^{+}\rangle}{E_{m} + E_{0}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Calculation in three steps:

- calculate the final and initial states
- generate the doorway states $\vec{\sigma} t_{-} |0_{i}^{+}\rangle$ and $\vec{\sigma} t_{+} |0_{f}^{+}\rangle$

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} ||\vec{\sigma}t_{-}||1_{m}^{+}\rangle\langle 1_{m}^{+}||\vec{\sigma}t_{-}||0_{i}^{+}\rangle}{E_{m} + E_{0}}$$

Calculation in three steps:

- calculate the final and initial states
- generate the doorway states $\vec{\sigma}t_{-}|0_{i}^{+}\rangle$ and $\vec{\sigma}t_{+}|0_{f}^{+}\rangle$
- take a doorway and use of Lanczos Strength Function method:

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} ||\vec{\sigma}t_{-}||1_{m}^{+}\rangle\langle 1_{m}^{+}||\vec{\sigma}t_{-}||0_{i}^{+}\rangle}{E_{m} + E_{0}}$$

Calculation in three steps:

- calculate the final and initial states
- generate the doorway states $\vec{\sigma}t_{-}|0_{i}^{+}\rangle$ and $\vec{\sigma}t_{+}|0_{f}^{+}\rangle$
- take a doorway and use of Lanczos Strength Function method:
- at iteration N, N 1⁺ states in the intermediate nucleus, with excitation energies E_m

$$M_{GT}^{2\nu} = \sum_{m} \frac{\langle \mathbf{0}_{f}^{+} ||\vec{\sigma}t_{-}||\mathbf{1}_{m}^{+}\rangle\langle\mathbf{1}_{m}^{+}||\vec{\sigma}t_{-}||\mathbf{0}_{i}^{+}\rangle}{E_{m} + E_{0}}$$

Calculation in three steps:

- calculate the final and initial states
- generate the doorway states $\vec{\sigma}t_{-}|0_{i}^{+}\rangle$ and $\vec{\sigma}t_{+}|0_{f}^{+}\rangle$
- take a doorway and use of Lanczos Strength Function method:

• at iteration N, N 1⁺ states in the intermediate nucleus, with excitation energies E_m

• overlap with the other doorway, enter energy denominators and add up the N contributions

2ν half-lifes

2ν half-lifes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2ν half-lifes

Evolution of Strength Distribution

Evolution of Strength Distribution

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

⁴⁸Ca(p,n)⁴⁸Sc Strength Function

⁴⁸Ca(p,n)⁴⁸Sc Strength Function

Quenching of GT operator in the *pf*-shell

Nucleus	Uncorrelated	Correlated		Expt.
		Unquenched	<i>Q</i> = 0.74	
⁵¹ V	5.15	2.42	1.33	1.2 ± 0.1
⁵⁴ Fe	10.19	5.98	3.27	3.3 ± 0.5
⁵⁵ Mn	7.96	3.64	1.99	1.7 ± 0.2
⁵⁶ Fe	9.44	4.38	2.40	2.8 ± 0.3
⁵⁸ Ni	11.9	7.24	3.97	$\textbf{3.8}\pm\textbf{0.4}$
⁵⁹ Co	8.52	3.98	2.18	1.9 ± 0.1
⁶² Ni	7.83	3.65	2.00	2.5 ± 0.1

Quenching of GT strength in the *pf*-shell

・ロト<・<・<・<・<・・<li

Quenching of GT strength in the *pf*-shell

・ロト<・<・<・<・<・・<li

Quenching of M1 operator in the pf-shell

Neumann-Cosel et al. Phys. Lett. **B433** 1 (1998)

Quenching of M1 operator in the *pf*-shell

Neumann-Cosel et al. Phys. Lett. **B433** 1 (1998)

Quenching of M1 operator in the *pf*-shell

(KB3 interaction)

Quenching of GT operator in the *pf*-shell

perimetal result of Cavendon *et al.* (1982) is given by the error bars; the prediction obtained using Hartree-Fock orbitals with adjusted occupation numbers is given by the curve. The systematic shift of 0.0008 fm⁻³ at $r \le 4$ fm is due to deficiencies of the calculation in predicting the core polarization effect.

V. R. Pandharipande, I. Sick and P. K. A. deWitt Huberts, Rev. mod. Phys. **69** (1997) 981

Quenching of GT operator in the pf-shell

If we write

$$\begin{split} \hat{i} &\rangle = \alpha |\mathbf{0}\hbar\omega\rangle + \sum_{n\neq 0} \beta_n |n\hbar\omega\rangle, \\ &\hat{f} &\rangle = \alpha' |\mathbf{0}\hbar\omega\rangle + \sum_{n\neq 0} \beta'_n |n\hbar\omega\rangle \end{split}$$

then

$$\langle \hat{f} \parallel \mathcal{T} \parallel \hat{i} \rangle^2 = \left(\alpha \alpha' T_0 + \sum_{n \neq 0} \beta_n \beta'_n T_n \right)^2,$$

n ≠ 0 contributions negligible *α* ≈ *α*'

projection of the physical wavefunction in the $0\hbar\omega$ space is $Q \approx \alpha^2$

transition quenched by Q^2

▲□▶▲□▶▲□▶▲□▶ □ のへで

Renormalisation of the GT operator by MBPT

PHYSICAL REVIEW C 95, 064324 (2017) Calculation of Gamow-Teller and two-neutrino double-β decay properties for ¹³⁰Te and ¹³⁶Xe with a realistic nucleon-nucleon potential

L. Coraggio,^{1,*} L. De Angelis,¹ T. Fukui,¹ A. Gargano,¹ and N. Itaco^{1,2}

Renormalisation of the GT by Many-Body Perturbation Theory

Renormalisation of the GT operator by MBPT

PHYSICAL REVIEW C 95, 064324 (2017) Calculation of Gamow-Teller and two-neutrino double-β decay properties for ¹³⁰Te and ¹³⁶Xe with a realistic nucleon-nucleon potential

L. Coraggio,^{1,*} L. De Angelis,¹ T. Fukui,¹ A. Gargano,¹ and N. Itaco^{1,2}

Renormalisation of the GT by Many-Body Perturbation Theory

Renormalisation of the GT operator by MBPT

PHYSICAL REVIEW C 95, 064324 (2017) Calculation of Gamow-Teller and two-neutrino double-β decay properties for ¹³⁰Te and ¹³⁶Xe with a realistic nucleon-nucleon potential

L. Coraggio,^{1,*} L. De Angelis,¹ T. Fukui,¹ A. Gargano,¹ and N. Itaco^{1,2}

Renormalisation of the GT by Many-Body Perturbation Theory Further step, apply MBPT to Neutrinoless operator

・ロト (四) (三) (三) (三) (日)

Exchange of a light neutrino, only left-handed currents

The theoretical expression of the half-life of the 0ν mode can be written as:

$$[T^{0
u}_{1/2}(0^+
ightarrow 0^+)]^{-1} = G_{0
u} |M^{0
u}|^2 \langle m_
u
angle^2$$

Neutrinoless mode:

CLOSURE APPROXIMATION then

$$\langle \Psi_f || \mathcal{O}^{(\kappa)} || \Psi_i \rangle$$
 with $\mathcal{O}^{(\kappa)} = \sum_{ijkl} W^{\lambda,\kappa}_{ijkl} \left[(a_i^{\dagger} a_j^{\dagger})^{\lambda} (\tilde{a_k} \tilde{a_l})^{\lambda} \right]^{\kappa}$

Neutrinoless mode:

CLOSURE APPROXIMATION then

$$\langle \Psi_{f} || \mathcal{O}^{(\mathcal{K})} || \Psi_{i} \rangle$$
 with $\mathcal{O}^{(\mathcal{K})} = \sum_{ijkl} \left(W_{ijkl}^{\lambda,\mathcal{K}} \sum_{ijkl} \left[(a_{i}^{\dagger}a_{j}^{\dagger})^{\lambda} (\tilde{a}_{k}\tilde{a}_{l})^{\lambda} \right]^{\mathcal{K}}$ two-body operator

▲ロト ▲ 聞 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Neutrinoless mode:

CLOSURE APPROXIMATION then

$$\langle \Psi_{f} || \mathcal{O}^{(\mathcal{K})} || \Psi_{i} \rangle$$
 with $\mathcal{O}^{(\mathcal{K})} = \sum_{ijkl} \left(\mathcal{W}_{ijkl}^{\lambda,\mathcal{K}} \left[(a_{i}^{\dagger}a_{j}^{\dagger})^{\lambda} (\tilde{a}_{k}\tilde{a}_{l})^{\lambda} \right]^{\mathcal{K}}$ two-body operator

We are left with a "standard" nuclear structure problem

$$M^{(0\nu)} = M^{(0\nu)}_{GT} - (\frac{g_V}{g_A})^2 M^{(0\nu)}_F - M^{(0\nu)}_T$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○日 ● 今へ⊙

SM results for $(\beta\beta)_{0\nu}$

emitter	$\langle m_{\nu} angle$ (T _{1/2} = 10 ²⁵ y.)	M ^{tot} ₀ (UCOM)	
⁴⁸ Ca ⁷⁶ Ge ⁸² Se ⁹⁶ Zr ¹⁰⁰ Mo ¹¹⁰ Pd	0.63 0.72 0.37	0.85 2.81 2.64	
¹¹⁶ Cd ¹²⁴ Sn ¹²⁸ Te ¹³⁰ Te ¹³⁶ Xe	0.46 0.37 1.32 0.28 0.38	1.60 2.62 2.88 2.65 2.19	
¹⁵⁰ Nd	heavy and deformed !		

Pairing correlations and $0\nu\beta\beta$ decay

 $0\nu\beta\beta$ decay favoured by proton-proton, neutron-neutron pairing, but it is disfavored by proton-neutron pairing

Hinohara, Engel, PRC 90 031301 (2014)

Related to approximate SU(4) symmetry of the $\sum H(r_i)\sigma_i\sigma_j \underline{\tau}_i \tau_j$ operator $\sigma_{\alpha\alpha\beta}$

Pairing correlations and $0\nu\beta\beta$ decay

 $0\nu\beta\beta$ decay favoured by proton-proton, neutron-neutron pairing, but it is disfavored by proton-neutron pairing

E. Caurier et al., PRL100 052503 (2008)

Addition of isoscalar pairing

Related to approximate SU(4) symmetry of the $\sum H(r_i)\sigma_i\sigma_j \underline{\tau}_i \tau_j$ operator $\sigma_{\alpha\alpha\beta}$

E. Caurier et al., PRL100 052503 (2008)

$\mathbf{0}\nu\beta\beta$ matrix elements: last 5 years

Comparison of nuclear matrix elements calculations: 2012 vs 2017

P. Vogel, J. Phys. G39 124002 (2012)

J. Engel, Rep. Prog. Phys.80 046301 (2017)

What have we learned in the last 5 years ?

Shell model configuration space: two shells

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

⁷⁶Ge matrix element in two shells: approximate

Large configuration space calculations in 2 major oscillator shells include all relevant correlations: isovector/isoscalar pairing, deformation Many-body approach: Generating Coordinate Method (GCM)

GCM approximates shell model calculation

Degrees of freedom, or generating coordinates validated against exact shell model in restricted configuration space

nac

Jiao et al., PRC96 054310 (2017)

⁷⁶Ge nuclear matrix elements in 2 major shells very similar to shell model nuclear matrix element in 1 major shell

Heavy-neutrino exchange nuclear matrix elements

Contrary to light-neutrino exchange, for heavy-neutrino exchange decay shell model, IBM and EDF matrix elements agree reasonably!

Heavy-neutrino matrix element

Compared to light-neutrino exchange

heavy neutrino exchange dominated by shorter internucleon range, larger momentum transfers

heavy neutrino exchange contribution from J > 0 pairs smaller: pairing most relevant

Long-range correlations (except pairing) not under control

J. Menendez, JPG 45 014003 (2018)

◆ロ > ◆母 > ◆臣 > ◆臣 > ◆日 > ◆ 句 > ◆

Summary

Reliable nuclear matrix elements needed to plan and fully exploit impressive experiments looking for neutrinoless double-beta decay

- Matrix elements differences between present calculations, factor 2-3 besides additionnal "quenching" ?
- 48 Ca and 76 Ge matrix elements in larger configuration space increase $\lesssim 30\%$, missing correlations introduced in IBM, EDF
- First Ab-initio calculations of β decays do not need additionnal "quenching", Ab-initio ⁴⁸Ca matrix elements in progress

• $2\nu\beta\beta$ decay, μ -capture/ ν -nucleus scattering and double Gamow-Teller transitions can give insight on $0\nu\beta\beta$ matrix elements

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

$(\beta\beta)_{0\nu}$ matrix elements

$$\begin{split} M_{GT}^{(0\nu)} &= \langle 0_{f}^{+} \| \sum_{n,m} h(\sigma_{n}.\sigma_{m})t_{n-}t_{m-} \| 0_{i}^{+} \rangle, \qquad \chi_{F} &= \langle 0_{f}^{+} \| \sum_{n,m} ht_{n-}t_{m-} \| 0_{i}^{+} \rangle \left(\frac{g_{V}}{g_{A}} \right)^{2} / M_{GT}^{(0\nu)}, \\ \chi_{GT}^{'} &= \langle 0_{f}^{+} \| \sum_{n,m} h'(\sigma_{n}.\sigma_{m})t_{n-}t_{m-} \| 0_{i}^{+} \rangle / M_{GT}^{(0\nu)}, \qquad \chi_{F}^{'} &= \langle 0_{f}^{+} \| \sum_{n,m} h't_{n-}t_{m-} \| 0_{i}^{+} \rangle \left(\frac{g_{V}}{g_{A}} \right)^{2} / M_{GT}^{(0\nu)}, \\ \chi_{GT}^{\omega} &= \langle 0_{f}^{+} \| \sum_{n,m} h_{\omega}(\sigma_{n}.\sigma_{m})t_{n-}t_{m-} \| 0_{i}^{+} \rangle / M_{GT}^{(0\nu)}, \qquad \chi_{F}^{\omega} &= \langle 0_{f}^{+} \| \sum_{n,m} h_{\omega}t_{n-}t_{m-} \| 0_{i}^{+} \rangle \left(\frac{g_{V}}{g_{A}} \right)^{2} / M_{GT}^{(0\nu)}, \\ \chi_{T} &= \langle 0_{f}^{+} \| \sum_{n,m} h' [(\sigma_{n}.\hat{r}_{n,m})(\sigma_{m}.\hat{r}_{n,m}) - \frac{1}{3}\sigma_{n}.\sigma_{m}]t_{n-}t_{m-} \| 0_{i}^{+} \rangle / M_{GT}^{(0\nu)}, \\ \chi_{P} &= \langle 0_{f}^{+} \| i \sum_{n,m} h' \left(\frac{t_{+}n,m}{2t_{n,m}} \right) [(\sigma_{n} - \sigma_{m}).(\hat{r}_{n,m} \times \hat{r}_{+n,m})]t_{n-}t_{m-} \| 0_{i}^{+} \rangle \frac{g_{V}}{g_{A}} / M_{GT}^{(0\nu)}, \\ \chi_{R} &= \frac{1}{6} (g_{-\frac{1}{2}}^{s} - g_{\frac{1}{2}}^{s}) \langle 0_{f}^{+} \| \sum_{n,m} h_{R}(\sigma_{n}.\sigma_{m})t_{n-}t_{m-} \| 0_{i}^{+} \rangle \frac{g_{V}}{g_{A}} / M_{GT}^{(0\nu)}. \end{split}$$

back

< ロ > < 目 > < 目 > < 目 > < 目 > < 回 > < ○ < ○

$(\beta\beta)_{0\nu}$ matrix elements

$$\begin{split} h(r, \langle \mu \rangle) &= \frac{R_0}{r} \phi(\langle \mu \rangle m_e r), \\ h'(r, \langle \mu \rangle) &= h + \langle \mu \rangle m_e R_0 h_0(\langle \mu \rangle r), \\ h_\omega(r, \langle \mu \rangle) &= h - \langle \mu \rangle m_e R_0 h_0(\langle \mu \rangle r), \\ h_R(r, \langle \mu \rangle) &= -\frac{\langle \mu \rangle m_e}{M_l} (\frac{2}{\pi} \left(\frac{R_0}{r}\right)^2 - \langle \mu \rangle m_e R_0 h) + \frac{4\pi R_0^2}{M_p} \delta(r), \\ h_0(x) &= -\frac{d\phi}{dx}(x), \\ \phi(x) &= \frac{2}{\pi} [\sin(x) C_{int}(x) - \cos(x) S_{int}(x)], \\ \frac{d\phi}{dx} &= \frac{2}{\pi} [\sin(x) C_{int}(x) + \cos(x) S_{int}(x)]. \end{split}$$

 $S_{int}(x)$ and $C_{int}(x)$ being the integral sinus and cosinus functions,

$$S_{int}(x) = -\int_{x}^{\infty} \frac{\sin(\zeta)}{\zeta} d\zeta, \quad C_{int}(x) = -\int_{x}^{\infty} \frac{\cos(\zeta)}{\zeta} d\zeta$$

back