

Creation of Matter & Portal to New Physics

Matteo Agostini

Technical University of Munich (TUM) Double-Beta Research in France Workshop, Set 4 2018, Paris, France

- Theoretical contextualization
 - model independent
 - minimal extension of the 3-neutrino framework
 - other extensions of the 3-neutrino frameworks
- Experimental aspects
- Review of on-going experiments
- Experiment comparison and prospects

- Theoretical contextualization
 - model independent
 - minimal extension of the 3-neutrino framework
 - other extensions of the 3-neutrino frameworks
- Experimental aspects
- Review of on-going experiments
- Experiment comparison and prospects

Neutrinoless Double- β Decay ($0v\beta\beta$)

Hypothetical second order nuclear

transition: $(A, Z) \rightarrow (A, Z + 2) + 2e^{-1}$

 foreseen by many extensions of the Standard Model

- > possible in many isotopes for which single β decay is be forbidden
- > $T_{1/2}$ limits in the range $10^{21} 10^{26}$ yr

< 50% chance for an atom to decay in a hundred trillion times the age of the universe

A portal to Physics beyond the Standard Model

 $0\nu\beta\beta$ at the level of nucleons:

2n → 2p + 2e⁻

- 2 leptons are produced out of energy:
- matter creation ("leptogenesis")
- > need letpon-number-violating physics beyond the SM ($\Delta L=2$)

Fundamental process:

- > $0\nu\beta\beta$ as important as proton decay
- Baryo/Leptogenesis requires the violation of baryon number and lepton number (B - L is the only conserved quantity)

A portal to Physics beyond the Standard Model

 $\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu}(Q,Z) \cdot \left|\sum_{\text{mech. }i} \mathcal{M}_i \cdot \eta_i\right|$ The rate of the process $(1/T_{1/2})$ is proportional to the coherent sum of all mechanisms involved: Mechanism Phase Space Factor Nuclear Matrix Element λ'_{111} d_R e_L V + AV - A W_L W_R \tilde{u}_L u_L \tilde{g} χ_{jL}, N_{kL} light/heavy neutrinos N_{kR} right-handed current gluino / R-parity u_L P P W_L W_R \tilde{u}_L d_R e_L V - AV + A λ'_{111}

[Faessler et al, PRD, 83, 11 (2011), 113003]

$0v\beta\beta$ and the Origin of Neutrino Masses

Independently from underlying physics: if $0\nu\beta\beta$ decay exists, neutrinos are Majorana particle!

Black Box theorem:

 $0\nu\beta\beta$ operator can be rearranged to produce a neutrino/antineutrino oscillation (i.e. a Majorana mass term)

[Schechter, Valle, PRD 25 (1982) 2951]

Note: bulk of neutrino mass not given by $0\nu\beta\beta$ operator

[Duerr et al., JHEP 1106 091,2011]

- Theoretical contextualization
 - model independent
 - minimal extension of the 3-neutrino framework
 - other extensions of the 3-neutrino frameworks
- Experimental aspects
- Review of on-going experiments
- Experiment comparison and prospects

Vanilla Channel

Exchange of light-Majorana neutrinos:

- possible in a minimal extension of the SM (massive + majorana neutrinos)
- dominant channel for most of the models

$$[T_{1/2}^{0\nu}]^{-1} = G_{0\nu} \cdot |\mathcal{M}_{0\nu}(A,Z)|^2 \cdot |m_{\beta\beta}|^2$$

$$|m_{\beta\beta}| = \left|\cos^2\theta_{12}\,\cos^2\theta_{13}\,m_1 + \sin^2\theta_{12}\,\cos^2\theta_{13}\,m_2\,e^{i2\alpha_1} + \sin^2\theta_{13}\,m_3\,e^{i2\alpha_2}\right|$$

Vanilla Channel

- The parameter space for mbb is limited by the constraints from oscillation experiments
- > $m_{\beta\beta}$ > 17 meV for IO
- no constraints on majorana phases

[Lindner, Merle, Rodejohann et al, Phys. Rev. D 73, 053005]

 $|m_{\beta\beta}| = \left|\cos^2\theta_{12}\,\cos^2\theta_{13}\,m_1 + \sin^2\theta_{12}\,\cos^2\theta_{13}\,m_2\,e^{i2\alpha_1} + \sin^2\theta_{13}\,m_3\,e^{i2\alpha_2}\right|$

Neutrino Mass Observables

- Degenerate Majorana masses probed!
- Next target inverted ordering band

> $0\nu\beta\beta$ searches, cosmological surveys and direct mass measurements give complementary information!

Neutrino Mass Observables

Cosmology (Planck, Euclid)

sum of neutrinos masses

Beta-decay kinematic (KATRIN) electron neutrino mass

- Degenerate Majorana masses probed!
- Next target inverted ordering band

> $0\nu\beta\beta$ searches, cosmological surveys and direct mass measurements give complementary information!

Probability Density from Global Fits

In absence of neutrino mass mechanisms or flavour symmetries that fix the value of the Majorana phases or drive $m_{lightest}$ to zero, the probability distribution for $m_{\beta\beta}$ is pushed to large values:

[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)]

Flat prior for the Majorana phases \rightarrow small $m_{\beta\beta}$ values require a fine tuning of the parameters

Probability density from global fits

- > data in the analysis: oscillations + $0v\beta\beta$ + (cosmology)
- bands shows deformation due to NME uncertainty
- > $0v\beta\beta$ constraints on $m_{lightest}$ competitive with cosmology

Bulk of probability at reach with next generation experiments

[M.A., G Benato and J A Detwiler, Phys. Rev. D 96, 053001 (2017)] see also [A Caldwell et al, Phys.Rev. D96 (2017) no.7, 073001]

- Theoretical contextualization
 - model independent
 - minimal extension of the 3-neutrino framework
 - other extensions of the 3-neutrino frameworks
- Experimental aspects
- Review of on-going experiments
- Experiment comparison and prospects

[King, Merle, Stuart, JHEP 1312, 005 (2013)] [**M.A.**, Merle, Zuber EPJ C76 (2016) no.4, 176]

Flavour Models

3-neutrino framework extended with additional finite symmetry groups to explain the values of mixing angles and mass eigenstates:

- new correlations between observables
 (sum rules) schrink range allowed for m_{BB}
- some models will be probed with early stages of the next-generation experiments

3+1 Models

Adding a sterile neutrino changes dramatically the parameter space of interest. Current experiments are testing the IO horizontal band!

[[]W Rodejohann, Int.J.Mod.Phys. E20(2011)]

- Theoretical contextualization
 - model independent
 - minimal extension of the 3-neutrino framework
 - other extensions of the 3-neutrino frameworks
- Experimental aspects
- Review of on-going experiments
- Experiment comparison and prospects

Double-β Decaying Isotopes

[Courtesy of K. Shaefner]

Double-β Decaying Isotopes

- > cost depends on natural enrichment
- > the higher is $Q_{\beta\beta}$ the better:
 - $\succ 1/_2 T_{1/2} \propto G^{0\nu}(Q, Z) \propto (Q_{\beta\beta})^5$
- NMEs differes up to a factor 3
- very different detection technologies according to isotope

There is no "best" isotope. The detection technique can compensate for unfavorable parameters!

Standard Detection Approach

double- β isotope encompassed in the detector active material and behave as calorimeters

Most of the experiments have also other handles, however energy is the one observable that is both necessary and sufficient for discovery. Measuring of the electron energy sum: $0\nu\beta\beta$: (A, Z) -> (A, Z + 2) + 2e -> peak at Q_{ββ} $2\nu\beta\beta$: (A, Z) -> (A, Z + 2) + 2e⁻ + 2v -> continuum

[S. Elliot et al., Ann.Rev.Nucl.Part.Sci. 52 (2002)]

21

Energy Resolution and Background

[J. J. Gomez-Cadenas et al., PoS (GSSI2014), 004 (2015)]

Energy resolution important for background mitigation ($2\nu\beta\beta$ and others) and convincing signal identification

[S. Elliot et al., Ann.Rev.Nucl.Part.Sci. 52 (2002)]

Signal and Background rates

[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)]

$$N_{0
uetaeta} = \ln 2 \cdot arepsilon \cdot N_{atoms} \cdot rac{t}{T_{1/2}^{0
u}}$$

 $T_{1/2} = 10^{25} \text{ yr} \implies O(1) \text{ event / (10 kg yr)}$ $T_{1/2} = 10^{26} \text{ yr} \implies O(1) \text{ event / (100 kg yr)}$ $T_{1/2} = 10^{27} \text{ yr} \implies O(1) \text{ event / (1 t yr)}$ $T_{1/2} = 10^{28} \text{ yr} \implies O(1) \text{ event / (10 t yr)}$

For a discovery, background rate in ROI $(Q_{\beta\beta} \pm 1-2 \sigma)$ must be similar to signal rate

Signal Extraction and background shape uncertainty

KamLAND-Zen: O(10) cts/ROI + complex shape

GERDA: O(0.1) cts/ROI + simple shape

CUORE: O(10) cts/ROI + simple shape

- Theoretical contextualization
 - model independent
 - minimal extension of the 3-neutrino framework
 - other extensions of the 3-neutrino frameworks
- Experimental aspects
- Review of on-going experiments
- Experiment comparison and prospects

Major $Ov\beta\beta$ experiments

Major $Uv \beta \beta$ experiments		current gen	mid-term	long-term
Gas/Liquid detector Scalable self-shielding typically low efficiency 1-10% energy resolution	Liquid scintillator + time of flight event reconstruction (scintillation)	KZ	KZ-800 SNO⁺ phase I	KamLAND2-Zen SNO⁺ phase II
	Time Projection chambers (ionization + scintillation)	EXO NEXT-10	NEXT-100 PANDA-X-III	nEXO NEXT-2.0 PANDAX-III 1t
Solid detectors multi-detector design granularity high-efficiency 0.1% energy resolution	Bolometers (heat + scintillation)	CUORE CUPID-0 AMORE	AMORE II	CUPID
	Ge semiconductor (ionization)	GERDA MJD	LEGEND-200	LEGEND-1000
External detectors	Magnetized tracking	NEMO	SUPERNEMO	

Major $0v\beta\beta$ experiments

		current gen	mia-term	long-lenn
Gas/Liquid detector Scalable self-shielding typically low efficiency 1-10% energy resolution	Liquid scintillator + time of flight event reconstruction (scintillation)	KZ	KZ-800 SNO⁺ phase I	KamLAND2-Zen SNO⁺ phase II
	Time Projection chambers (ionization + scintillation)	EXO NEXT-10	NEXT-100 PANDA-X-III	nEXO NEXT-2.0 PANDAX-III 1t
<u>Solid detectors</u> multi-detector design granularity high-efficiency 0.1% energy resolution	Bolometers (heat + scintillation)	CUORE CUPID-0 AMORE	AMORE II	CUPID
	Ge semiconductor (ionization)	GERDA MJD	LEGEND-200	LEGEND-1000
External detectors	Magnetized tracking	NEMO	SUPERNEMO	

ourrent gen mid term

long torm

KamLAND-Zen (best achieved performance)

Location Kamioka, Japan ¹³⁶Xe [Q_{ββ}=2458 keV] Isotope Xe-loaded liquid scintillator Technology Isotope Mass 350 kg $0\nu\beta\beta$ efficiency 16% 100-120 keV Resolution $[\sigma]$ Status | commissioning next phase $T_{1/2} > 1.1 \cdot 10^{26}$ yr (90% CL) $T_{1/2} > 5.6 \cdot 10^{25}$ yr (90% CL) Latest results Sensitivity

Next Phase KZ-800:

- > 750 kg of isotope
- New nylon balloon
- starting this year!

Future: KamLAND2-Zen:

- > 1 t of isotope
- improve resolution:
 brighter LS + new
 PMTs

²⁸

SNO⁺ (expected Phase I performance)

SNOLAB, Canada
¹³⁰ Te [Q ₈₈ =2527 keV]
Te-loaded liquid scintillator
1300 kg
12%
81 keV
commissioning first phase

Phase I

- > 780 t LAB (+ PPO + Te-ButaneDiol)
- 0.5% loading -> 1300 kg ¹³⁰Te
- currently filled with water
- > Filling with unloaded liquid scintillator later this year

Phase II

- Increase ¹³⁰Te concentration (8 t)
- Increase light yield, transparency, light detectors

aiar Augo ava ari

hajor ovpp experiments		current gen	mid-term	long-term
<u>Gas/Liquid detector</u>	Liquid scintillator + time of flight event reconstruction (scintillation)	ΚZ	KZ-800 SNO⁺ phase I	KamLAND2-Zen SNO⁺ phase II
self-shielding typically low efficiency 1-10% energy resolution	Time Projection chambers (ionization + scintillation)	EXO NEXT-10	NEXT-100 PANDA-X-III	nEXO NEXT-2.0 PANDAX-III 1t
<u>Solid detectors</u> multi-detector design	Bolometers (heat + scintillation)	CUORE CUPID-0 AMORE	AMORE II	CUPID
granularity high-efficiency 0.1% energy resolution	Ge semiconductor (ionization)	GERDA MJD	LEGEND-200	LEGEND-1000
External detectors	Magnetized tracking			
		INEIVIO	SUPERINEIVIO	

[Phys.Rev.Lett. 120 (2018) no.7, 072701]

Counts/bin

keV)

Counts/(15

Major $0\nu\beta\beta$ experiments

		current gen	mu-term	iong-term
<u>Gas/Liquid detector</u> Scalable self-shielding typicall low efficiency 1-10% energy resolution	Liquid scintillator + time of flight event reconstruction (scintillation)	KZ	KZ-800 SNO⁺ phase I	KamLAND2-Zen SNO⁺ phase II
	Time Projection chambers (ionization + scintillation)	EXO NEXT-10	NEXT-100 PANDA-X-III	nEXO NEXT-2.0 PANDAX-III 1t
Solid detectors multi-detector design	Bolometers (heat + scintillation)	CUORE CUPID-0 AMORE	AMORE II	CUPID
Solid detectors multi-detector design granularity high-efficiency 0.1% energy resolution	Bolometers (heat + scintillation) Ge semiconductor (ionization)	CUORE CUPID-0 AMORE GERDA MJD	AMORE II LEGEND-200	CUPID LEGEND-1000
Solid detectors multi-detector design granularity high-efficiency 0.1% energy resolution	Bolometers (heat + scintillation) Ge semiconductor (ionization)	CUORE CUPID-0 AMORE GERDA MJD	AMORE II LEGEND-200	CUPID LEGEND-1000

. . . .

CUPID (expected performance)			
Location	LNGS, Italy		
Isotope	100 Mo [$Q_{\beta\beta}$ =2527 keV]		
Technology	scintillating calorimeters		
Isotope Mass	212 kg		
$0\nu\beta\beta$ efficiency	69%		
Resolution [σ]	2.1 keV		
Status	R&D		

pursued R&D for a future background-free experiment:

- ¹³⁰TeO₂ [heat + Cherenkov light] alpha-beta separation achieved with CUORE-size crystal and Neganov-Luke amplification
- Zn⁸²Se [heat + scintillation light] CUPID-0 running at LNGS, great background achieved
- Li₂¹⁰⁰MoO₄ [heat + scintillation light] CUPID-Mo Phase-I with 2.34 kg 100 Mo in commissioning

heat + light

light can be

Cherenkov

increase

detectors

scintillation or

 \succ

 \succ

Major $0v\beta\beta$ experiments

		current gen	mia-term	long-term
<u>Gas/Liquid detector</u> Scalable self-shielding typically low efficiency 1-10% energy resolution	Liquid scintillator + time of flight event reconstruction (scintillation)	KZ	KZ-800 SNO⁺ phase I	KamLAND2-Zen SNO⁺ phase II
	Time Projection chambers (ionization + scintillation)	EXO NEXT-10	NEXT-100 PANDA-X-III	nEXO NEXT-2.0 PANDAX-III 1t
Solid detectors multi-detector design granularity high-efficiency 0.1% energy resolution	Bolometers (heat + scintillation)	CUORE CUPID-0 AMORE	AMORE II	CUPID
	Ge semiconductor (ionization)	GERDA MJD	LEGEND-200	LEGEND-1000
External detectors	Magnetized tracking	NEMO	SUPERNEMO	

LEGEND (expected performance)

Location	LNGS, Italy (first phase)
Isotope	⁷⁶ Ge [Q ₈₈ =2039 keV]
Technology	Semiconductor Ge detectors
Isotope Mass	174 kg
$0\nu\beta\beta$ efficiency	65%
Resolution [σ]	1.3 keV
Status	under design

LEGEND builds upon the successful experience of GERDA and MAJORANA:

- \succ GERDA \rightarrow LAr active veto system
- MAJORANA + low background material
 - → front-end electronics

Stages approach:

- ► LEGEND-200 → 200 kg of detectors in the current GERDA infrastructure
- ➤ LEGEND-1000 → 1000 kg of detectors in a new setup (location not defined yet)

From GERDA to LEGEND-200:

- new detectors (inverted coax)
- increased LAr veto efficiency
- Cleaner materials
- Improved electronics

Funding for L200 secured! Commissioning in 2020 Physics data taking in 2021

- Theoretical contextualization
 - model independent
 - minimal extension of the 3-neutrino framework
 - other extensions of the 3-neutrino frameworks
- Experimental aspects
- Review of on-going experiments
- Experiment comparison and prospects

Sensitivity

- Ge experiments pursue a staged approach. Each stage as background level and exposure goals such to be background free
- Xe experiments reduce the background by self-shielding.
 Development along a clear direction with the attempt to get background free (helps for discovery)
- Sensitivity does not take into account the uncertainty/reliability of the signal extraction

[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)]

Conclusion and Outlook

- \succ 0v $\beta\beta$: matter creating process measurable in the lab
- Strong implications for particle physics, cosmology and neutrinos. Important not to focus on a single mechanism!
- Huge experimental effort, many ton-scale experiments in preparation
- The discovery probability of next-generation experiment is high and a discovery could be around the corner. Important to keep on increasing the T_{1/2} sensitivity for each isotope
- Variety of the field is a strength! Absolutely needed to observe the signal in multiple isotopes and with different experimental techniques