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Abstract

Abstract

This talk presents applications of Operator Theory to the
"Quantization of Scalar Fields on Curved Space-Times,"
"The Stability of Stars," from Newtonian Astrophysics, "The
Stability of Rotating Black Holes," from General Relativity,
the "Formulation of Outgoing Boundary Conditions" to
partial differential equations, the "Diffusion Equation with
Rough Coefficients," the "Description of Visco-Elastic
Damping" and the "Description of Crack Propagation in
Materials" in the framework of "Peridynamics."
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Quantum Field Theory in Curved Space-Times

I A main lesson taught by the field of Quantum Field Theory
in Curved Space-Times is that

I the definition of the admissible states of the theories uses
information that is non-local in the sense of differential
geometry.

I My work, [Beyer, 1991], proved this in the particular case
of the quantization (due to Fulling) of the free massive
neutral scalar field,

I restricted to an open submanifold R (the ‘right wedge’) of
Minkowski spacetime,

I in the context of the Algebraic Quantum Field Theory.
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Quantum Field Theory in Curved Space-Times

I In particular, a new approach to a rigorous definition of
that quantization was given,

I using the functional calculus associated with the governing
operator of the classical wave equation,

I and for the first time the associated Wightman two-point
distribution was calculated.

I From the latter certain scaling limits were computed, for
the vector states of Fulling’s theory at each point in the
closure of R.
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Quantum Field Theory in Curved Space-Times

I As a consequence, it was proved that for certain bounded
open subsets of R,

I whose boundary includes points of the "edge of R",
I the Fulling representation and the usual representation of

the corresponding subalgebra of the Weyl algebra,
I associated with the algebra of the canonical commutation

relations, CCR,
I are not quasi-equivalent.
I Finally, further scaling limits are stated for the vector states

of the standard theory as well as Fulling’s theory.
I These scaling limits differ at points of the remaining part

of the boundary of R.
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Stability of Stars

Figure 1: The governing equation for linearized adiabatic stellar
oscillations around a spherically symmetric stellar equilibrium model,
with mass density ρ, pressure p, adiabatic index Γ1 and buoyancy term
A := (ln ρ)′ − Γ−1

1 (ln p)′. Here the unknown function is
~ξ : R× star→ R3, a Lagrangian displacement variable.
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Stability of Stars

Figure 2
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Stability of Stars

Results [Beyer, 1995, 1995, 2000], [Beyer & Schmidt,
1995]:

I For a polytropic equation of state,
I L induces a densely-defined, linear and symmetric

operator L̂0 in a weighted L2-space (X, 〈 | 〉).
I The physical boundary condition selects a uniquely

determined self-adjoint extension, L̂, of L̂0.
I The spectrum of L̂ is a pure point spectrum,
I i.e., in particular the eigenfunctions of L̂ are

complete.
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Stability of Stars

Results:
I Pure point spectra are known to be quite unstable

against small perturbations of an operator.
I Therefore, a numerical treatment of stellar

oscillations likely leads to occurence of false
continuous spectra.

I In a relativistic treatment, indeed continuous parts
occur inside the physical spectrum!

I Work of [Kojima, 1998] and [Beyer & Kokkotas,
1999].
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Applications of the Functional Calculus that is
Associated with Self-Adjoint Linear Operators in
Infinite Dimensional Hilbert Spaces

Functional Cal-
culus in Infinite

Dimensions

IVP for the
Schroedinger Equation,

i~ψ′ = Hψ ,

ψ(t) = e−i t
~Hψ(0)

IVP for Wave
Equations,

u′′ = −Au , (PD)

u(t) = cos(t
√

A ) u(0)

+
sin(t
√

A )√
A

u′(0)

IVP for the
Heat Equation,

T ′ = κ4T ,

T(t) = e−κt(−4)T(0)

IVP for Systems of
Quasi-Linear Equations
→ Semigroups of Linear
Operators (Kato Theory),

IVP for General Non-
Linear Equations
→ Theory of Non-
Linear Semigroups,
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Stability of Rotating Black Holes

I The stability of the Schwarzschild black hole was
demonstrated by [Kay & Wald, 1987],

I who showed the boundedness of all solutions of the wave
equation corresponding to C∞ data of compact support.

I Their proof rests on the positivity of the conserved energy.
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Stability of Rotating Black Holes

I The problem is more subtle for Kerr space time and still
open.

I A conserved energy exists, but the energy density is
negative inside the ergosphere.

I Hence the total energy could be finite while the field still
might grow exponentially in parts of the spacetime.
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Stability of Rotating Black Holes

I The reduced Klein-Gordon equation in a Kerr background,
I of mass M > 0 and angular parameter a ∈ [0,M],
I corresponding to a mass m0 > 0
I and governing solutions of the form

ψ(t, r, θ, φ) = eimϕ u(t, r, θ) ,

I where m runs through all integers and
I t ∈ (−∞,∞), r ∈ (r+,∞), θ ∈ (0, π), ϕ ∈ (0, 2π)

I are the Boyer-Lindquist coordinates
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Stability of Rotating Black Holes
is given by

∂2u
∂t2 +

4
(r2 + a2)Σ + 2Ma2r sin2 θ

·[
4imMar
4

∂u
∂t
− ∂

∂r
4 ∂

∂r
− 1

sin θ
∂

∂θ
sin θ

∂

∂θ

+
m2

4 sin2 θ

(
4− a2 sin2 θ

)
+ m2

0 Σ

]
u = 0 ,

and

4 := r2+a2−2Mr , Σ := r2+a2 cos2 θ , r+ := M+
√

M2 − a2 .

The quantity r+ is the largest zero of4.
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Stability of Rotating Black Holes
Results:

I The wave equation is of the form

(u′)′(t) + iBu′(t) + (A + C)u(t) = 0 (5.1)

for every t ∈ I ,
I for suitable operators A,B and C.
I The stability of the solutions is governed by the spectrum

of the corresponding operator polynomial

A− λB− λ2 (5.2)

where λ ∈ C.
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Stability of Rotating Black Holes
I The papers [Beyer, 2001, 2011], among others, proves that

the solutions of (5.1) are stable if the mass m0 satisfies the
inequality

m0 >
|m|a

2Mr+

√
1 +

2M
r+

. (5.3)

I There was a mounting evidence that the solutions of (5.1)
are unstable if the (5.3) is violated.

I In particular, [Beyer, Alcubierre & Megevand, 2013] create
a closely related model that indicates the existence of
unstable eigenvalues of (5.2).

I Afterwards, this has been proved, [Shlapentokh-Rothman,
2014].
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Stability of Rotating Black Holes

I In connection with the problem of the stability of black
holes,

I often quasi-normal frequencies and modes appear.
I My paper, [Beyer, 1999], gave an operator theoretic

interpretation of these frequencies as
I resonances of the governing operator of the wave equation

in question.
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The Formulation of Outgoing Boundary
Conditions to PDE

In the following, we give a well-posed formulation of the
initial-boundary value problem for

∂2u
∂t2 −

∂2u
∂x2 + Vu = 0

on the interval I = (0, a), where a > 0, for standard
Sommerfeld outgoing boundary conditions

(
∂u
∂t
− ∂u
∂x

) ∣∣∣∣∣
x=0

= 0 ,
(
∂u
∂t

+
∂u
∂x

) ∣∣∣∣∣
x=a

= 0
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The Formulation of Outgoing Boundary
Conditions to PDE

and Engquist-Majda outgoing boundary conditions

(
∂2u
∂x∂t

− ∂2u
∂x2 +

V
2

u
)

(0) = 0 ,(
∂2u
∂x∂t

+
∂2u
∂x2 −

V
2

u
)

(a) = 0 .
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The Formulation of Outgoing Boundary
Conditions to PDE

Definition 6.1
We define the linear operator

AV : D(AV )→ W 1
C(I)× L2

C(I)

in X := W 1
C(I)× L2

C(I) by

D(AV ) := {(f , g) ∈ C2(Ī,C)× C1(Ī,C) : f ′0 − g0 = f ′a + ga = 0}

and

AV (f , g) := (−g,−f ′′ + Vf )

for all (f , g) ∈ D(AV ). 21 / 52



The Formulation of Outgoing Boundary
Conditions to PDE

Results: [Beyer, 2007], among others

Theorem 6.2
(i) AV is a densely-defined, linear and accretive operator in X.

(ii) ĀV generates a contractive strongly continuous semigroup
TV : [0,∞)→ L(X,X).
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Properties of the Diffusion Equation with Rough
Coefficients

I The diffusion equation

∂u
∂t

= div(p grad u) + f (7.1)

describes general diffusion processes,
I including the propagation of heat, and flows through

porous media.
I Here u is the density of the diffusing material,
I p is the diffusivity of the material,
I and the function f describes the distribution of sources and

sinks.
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Properties of the Diffusion Equation with Rough
Coefficients

I [Aksoylu & Beyer, 2009] and [Aksoylu & Beyer, 2010]
focus on stationary solutions of (7.1) satisfying

−div(p grad u) = f . (7.2)

I For instance, the fictitious domain method
I and composite materials are sources of rough coefficients.
I Important current applications deal with composite

materials whose components have nearly constant
diffusivity,

I but vary by several orders of magnitude.
I In composite material applications, it is quite common to

idealize the diffusivity by a piecewise constant function
I and also to consider limits where the values of that

function approach zero or infinity in parts of the material.
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Properties of the Diffusion Equation with Rough
Coefficients

Figure 3: Definition of the diffusion operator. Here, n ∈ N∗ and Ω is
some non-empty open subset of Rn.

Figure 4: Definition of a suitable class of diffusivities.
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Properties of the Diffusion Equation with Rough
Coefficients

Figure 5: Basic properties of the diffusion operator I

Figure 6: Basic properties of the diffusion operator II

Figure 7: Associated first-order operator.
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Properties of the Diffusion Equation with Rough
Coefficients

I In n-dimensions, n > 1, by assuming a weak notion of
convergence on the set of diffusivities,

I we prove the strong sequential continuity of the solution
maps.

I In 1 dimension, we prove a stronger result, i.e., the unique
extendability of the map of solution operators, associating
to each diffusivity the corresponding solution operator,

I to a sequentially continuous map in the operator norm on a
set containing "diffusivities" assuming infinite values in
parts of the medium.

I In this case, we also give explicit estimates on the
convergence behavior of the map.

I In the end, we provide connections to preconditioning.
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Application of Fractional Derivatives to
Visco-Elastic Damping

I Equation of motion for a single degree of freedom
oscillator with viscous damping is given by

(D2 + aD + b)x = f ,

I x denotes the displacement at time t with respect to the
equilibrium position for f = 0,

I f is the external force per mass,
I a, b ∈ R are the damping and the stiffness constants per

mass
I and D denotes the derivative.
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Application of Fractional Derivatives to
Visco-Elastic Damping

I It has been suggested by [Caputo, 1976],
I to substitute D in the damping term by a fractional

derivative, Dq, 0 < q < 1,
I in the sense of Riemann-Liouville
I and to solve the generalized equation

(D2 + aDq + b)x = f , (8.1)

by a Fractional Calculus as established by [Ross, 1975,
1977], [Oldham & Spanier, 1974] see also [Bride, 1975]
and [Nishimoto, 1984, 1987].
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Application of Fractional Derivatives to
Visco-Elastic Damping

The major reasons for replacing the viscous damping law by
one with a fractional derivative are the following.

I The curve fitting properties of measured response
functions, in time and frequency domain, for viscoelastic
damping laws improve, in particular, qualitatively.

I Less parameters are sufficient for the curve fit, compared to
an improvement of the damping law that takes into account
higher order integer derivatives.

I The violation of causality in time domain response, which
sometimes occurs with generalized damping laws, such as
structural (constant hysteretic) damping, can be avoided.
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Application of Fractional Derivatives to
Visco-Elastic Damping

Results:
I [Beyer & Kempfle, 1995], use a functional-analytic

approach for the treatment of integro-partial differential
equations.

I Represent (8.1) as an operator equation

Ax = f , (8.2)

for an operator A : D(A)→ X, D(A) ⊂ X, in an
appropriate function space (“data space”) X ,

I Prove well-posedness of the problem, or what is the same,
“the stability of the solutions”, i.e., that there is a unique
solution x ∈ X to (8.2) depending continuously on the
forcing term f ∈ X,
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Application of Fractional Derivatives to
Visco-Elastic Damping

I Prove that solutions are physically reasonable, i.e., in this
case, mainly that the solutions are causal.

I In addition, we calculate the solutions explicitly in terms of
confluent hypergeometric functions and the exponential
integral.
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Description of Crack Propagation in Materials,
using Peridynamics

Peridynamics
(PD)

Theory of
Elasticity

Explains
Stabil-
ity of

Materials Unsuitable
for De-
scribing
Cracks

Uses
Local

Operators
(PDE)

Local
Boundary

Con-
ditions

Boundary
Conditions?

Involves
Non-Local
Operators

Crack
Propagation

Sandia Labs
(∼ 2000)

Replacement
of the The-

ory of
Elasticity
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Description of Crack Propagation in Materials,
using Peridynamics

The formal peridynamic wave equation in 1-space dimension is
given by

ρ
∂2u
∂t2 (x, t) =

∫ ∞
−∞

C(x′ − x) (u(x′, t)− u(x, t)) dx′ + b(x, t) ,

(9.1)
where x, t ∈ R,

C is the micromodulus, assumed to be a real-valued even function,

ρ > 0 is the mass density,

b is the prescribed body force density,

and u is the displacement field.
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Description of Crack Propagation in Materials,
using Peridynamics

For comparison, the corresponding equation in classical
elasticity is given by

ρ
∂2u
∂t2 = E

∂2u
∂x2 + b ,

where E > 0 is the so called "Young’s modulus,"

and is describing compression waves in a rod.
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Description of Crack Propagation in Materials,
using Peridynamics:

If C ∈ L1(R), we can rewrite (9.1) as

ρ
∂2u
∂t2 (x, t) = −

[∫ ∞
−∞

C(x′)dx′
]

u(x, t)

− (C ∗ u(·, t))(x) + b(x, t) ,

for all x, t ∈ R.
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Description of Crack Propagation in Materials,
using Peridynamics

Results:
I We, [Beyer & Aksoylu, 2016], [Aksoylu, Beyer & Celiker

2017, 2017], consider (9.1) in n ∈ N∗ dimensions.
I For this purpose, we use methods from operator theory
I and solve the following problems.
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Description of Crack Propagation in Materials,
using Peridynamics

Peridynamics

Mathe-
matical

Questions

Well-
posed

IVP? X

Calculation
of the

Solutions?
X

Conserved
Quan-
tities?
X

Stable
Solutions?

X

"Classical"
Limit?
X

Boundary
Condi-
tions?
X

Exact
Solutions?

Asymptotic
for Large
Times?

Propagation
of Discon-
tinuities?
X (1-dim)
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Description of Crack Propagation in Materials,
using Peridynamics

The development of the extension to the vectorial equa-
tions from PD in 2D/3D dimensions is work in progress!
Mathematically, such extension leads to "operator matri-
ces" as indicated in Remark 4 in [Beyer & Aksoylu, 2016].
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Thank You!
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