
1

Generative Models 
for fast simulation 

Sofia Vallecorsa

Laboratoire Leprince-Ringuet - Palaiseau - 15/10/2018



2

CERN OPENLAB

Evaluate and test state-
of-the-art technologies in a
challenging environment
and improve them in 
collaboration with industry.

Communicate
results, demostrate
impact, and reach
new audiences.

Collaborate and 
exchange ideas with
other communities to 
create knowledge and 
innovation.

Train the next generation of 
engineers/researchers, 
promote education and 
cultural exchanges.
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JOINT R&D PROJECTS

Data 
Acquisition 

(LHCb, IT-CF)

Code 
modernizati
on (EP-SFT, 

IT-CF)

Cloud infra 
(IT-CM)

Data Storage 
(IT-ST, IT-DB)

Networks 
(IT-CS)

Control 
Systems
(BE-ICS)

Data 
Analytics, 
Machine 
Learning 
(many)

High-bandwidth fabrics, 

accelerated platforms

Simulation, HPC 

on the Cloud,

benchmarking

Cloud federations, 

containers, scalability

Storage architectures, 

scalability, monitoring
Software Defined 

Networks, Security

Predictive/proactive 

maintenance and 

operations

Data quality monitoring, 

anomaly detection, 

physics data reduction, 

benchmarking/scalability, 

systems biology and 

large-scale multi-

disciplinary platforms
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Introduction

Deep Learning
Historic perspective and  basic NN concepts

Applications

Generative Models
Basics

Challenges - Performance

Generative Adversarial Networks

Our work
Status

Generalisation

Computing performance

Other Applications

Conclusion - Discussion

Outline 
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The problem

CMS

HL-LHC raw data volume increases exponentially

Technology at ~20%/year can bring x6-10

Estimates of resource needs x10 above what is realistic to expect

Today: 50% of WLCG resources are devoted to simulation
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Speeding up simulation 

Intense R&D activity  on code modernisation

• Improve existing code (Geant4 – scalar processing)

• Reduce memory consumption

• Implement event level parallelism

• Prototype fine grained parallelism through the GeantV “project”
• Improved, vectorised physics models

• Improved, vectorised geometry (VecGeom)

• Smart track level parallel transport

• Back-propagate improvements to Geant4

http://geant.cern.ch
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Fast Simulation

Already used for searches, upgrade studies,…

Different techniques

Shower libraries (pre-simulated EM showers, fwd calorimeters in 
ATLAS/CMS)

Shower shapes parametrizations (GFlash,..) 

Fast trackers simulation (ATLAS FATRAS, .. )

Look-up tables

Hit library (LHCb)

Fully parametrized simulation (DELPHES)

Different performance

Different speed improvements (x10 - x1000)

Different levels of accuracy (~10% wrt full sim)
7

Zaborowska, CHEP2016

FCChh

M. Rama, LHCb, CHEP2018

https://indico.cern.ch/event/505613/contributions/2230821/
https://indico.cern.ch/event/587955/contributions/2937608/attachments/1683154/2705103/fastcalo_lhcb_chep18.pdf
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A generic framework?

MC need to integrate fast simulation 

Geant4 has mechanism to mix fast and full simulation: user-
defined models within “envelopes”  few use it

Towards a  common framework providing

Algorithms and tools

Mechanism to mix fast and full simulation according to particle 
type and detector

R&D within CERN openlab to develop a generic fully customizable 
fast sim framework

Deep Learning  based

8

FCC Gaudi framework

• Full Sim 600 HS06.s (curr
3-5 times that )

• Fast Sim 10% of Full Sim

Assumption

year

Bozzi, CHEP 2016

LHCb

Zaborowska, CHEP2016

https://indico.cern.ch/event/505613/contributions/2230821/
https://indico.cern.ch/event/505613/contributions/2241722/
https://indico.cern.ch/event/505613/contributions/2230821/
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Deep Learning for fast sim

9

Energy 
depositions in 
cells

Particle type, 
mometum, 
pseudorapidity, 
detector entry 
point

EX. SIMULATION OF A CALORIMETER



10

Deep Learning for fast sim

Generic approach

Can encapsulate expensive computations 

DNN inference step is generally faster than algorithmic approach

Already parallelized and optimized for GPUs/HPCs. 

Industry building highly optimized software, hardware, and cloud services.

Numerous R&D activities (LHC and beyond)

10
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Deep Learning
A quick intro
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ML in HEP

• Analysis:
• Classifying signal from background

• B-tagging and improving energy / mass resolution

• Reconstruction:
• Improving detector level inputs to reconstruction

• Particle identification tasks

• Calibration

• Trigger

• Data Quality Monitoring and Anomaly Detection in 
control systems

• Computing
• Estimating dataset popularity, and determining how number 

and location of dataset replicas

• Resource optimisation ...
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Historic perspective

First network inspired by biological systems

2006: 

Modern Deep Learning

Theories on 

biological learning:

First linear models

Back-propagation to train shallow NN: apply the derivatives 

“chain rule” to speed up  NN training.

Goodfellow, 2017
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Increasing sizes

Datasets:

Model connections:

Goodfellow, 2017
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Increasing sizes (II) Goodfellow, 2017

Model neurons:
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Performance growth

2017 Google results

Human 

performance 

zone

https://arxiv.org/pdf/1409.0575.pdf

Closing in on narrow AI!
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Imagenet Large Scale Visual Recognition 
Challenge

Imagenet dataset: >14 M labelled images across 20K hierarchical categories 

ILVRC Challenge started in 2010 with 100 classes: 1000 classes now

2017: 28/30 participants reached better than human error rate

2018 challenge introduces video reconstruction
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Basics
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Artificial Neural Networks

ANN are computational models inspired by biological neural networks.
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Feed-forward networks 

Multiple nodes arranged in layers. 

Nodes from adjacent layers 
have connections (with weights). 

Ex. fully-connected layer

Multi Layer Perceptron (MLP) contains 
one or more hidden layers

Solving a MLP can be thought of as 
matrix multiplication calculation

NN with at least one hidden layer are universal approximators
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Convolutional Neural Networks

• Applicable to any input that is laid out on a 
grid (1-D, 2-D, 3-D, …)

• Sparse connections

• Parameter sharing

• Automatically generalize across spatial 
translations of inputs

• Easily scalable to process large images 
and video sequences
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Convolutions
x ∈ ℝM and kernel u ∈ ℝk

discrete convolution x ∗ u is vector of size M-k+1

2D convolutions extract features from input image 

using “small squares of input data”
preserve spatial relationship between pixels.

Ex:  5 x 5 input image, 3 x 3 kernel
Slide the filter matrix

Element wise multiplication 

Sum of the multiplication outputs
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Ex. Edge detection
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Example

Image from CVPR 2012 tutorial
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LeNet

LeCun et al, 1998

Pioneering 7 layers CNN to recognize hand-written numbers on checks 

Digitized in 32x32 pixel greyscale input images. 

Need larger CNN to process higher resolution images 

availability of computing resources!
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ILSVRC 2015: ResNet

Residual Neural Network introduced gate recurrent units and heavy batch 
normalization. 

152 layers (with less parameters than VGGNet): 3.57% error rate

Kaiming He et al, 2015 
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R. Feynman

What I cannot create I don’t understand

Generative Models
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The problem:

Assume data sample follows pdata distribution 

Can we draw samples  from distribution  pmodel such that pmodel ≈ pdata?

A  well known solution:

Assume some form for pmodel (using prior knowledge, parameterized by θ)

Find the maximum likelihood estimator

28

Generative models

draw samples from pθ∗

Generative models don’t assume any prior form for  pmodels

Use Neural Networks instead
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Generative models for simulation

Many models: Generative Stochastic Networks, Auto-Econders, Generative Adversarial 
Networks ..

Realistic generation of samples

Use complicated probability distributions

Optimise multiple output for a single input

Can do interpolation

Work well with missing data

29

Ranzato, Susskind, Mnih, Hinton, IEEE CVPR 2011
https://arxiv.org/pdf/1605.05396.pdf
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Generator G generates data from random noise

Discriminator D learns how to distinguish real data 
from generated data

30

Simultaneously train two networks that compete and cooperate with each other: 

Generative adversarial networks

arXiv:1406.2661v1 

Image source:

The counterfeiter/detective case

Counterfeiter shows the Monalisa

Detective says it is fake and gives feedback 

Counterfeiter makes new Monalisa based on feedback

Iterate until detective is fooled

https://arxiv.org/pdf/1701.00160v1.pdf

https://arxiv.org/abs/1406.2661v1
https://arxiv.org/abs/1406.2661v1
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
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Generative adversarial training

Assume a deterministic generator:

A  prior over latent space:

Define a discriminator:

A learnable loss function from the min-,max game

Wasserstein GAN

Arjowski et al ‘17
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Generative adversarial training (II)
Generator is trained to maximize the probability of Discriminator making a mistake

32

arXiv:1406.2661v1 

G and D don’t improve 
anymore.
D is unable to 
differentiate

Initially

D is not an 

accurate 

classifier

D is trained to discriminate 

samples from data

D gradient guide G to 

regions more likely to be 

classified as data

https://arxiv.org/abs/1406.2661v1
https://arxiv.org/abs/1406.2661v1
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How well 
does it 
work?

2014:
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How well 
does it 
work?

2018:

https://research.nvidia.com/sites/default/fil
es/pubs/2017-10_Progressive-Growing-
of/karras2018iclr-paper.pdf
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How well 
does it 
work?

2018:

https://research.nvidia.com/sites/default/fil
es/pubs/2017-10_Progressive-Growing-
of/karras2018iclr-paper.pdf
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GAN flavors

Original GAN was based on MLP in 2014

Deep Convolutional GAN in 2015

Conditional GAN 

Extended to learn a parameterized generator pmodel(x|θ); 

Useful to obtain a single generator object for all θ configurations

Interpolate between distribution

Auxiliary Classifier GAN

D can assign a class to the image

Progressive GAN 

Stack GAN

BIGAN ...

36
arXiv:1610.0958arXiv: 1411.1784

https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1610.09585.pdf
https://arxiv.org/pdf/1411.1784.pdf
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Generalisation

GANs produce distributions with limited support

Support size grows ~linearly with discriminator size (Zhang A., 
ICML’17)

Training dataset size does not help much for a given discriminator

BIGAN (on faces dataset)
support size is around 1M (training set ~200k)

Does the Generator fully learn the target 
distribution from small training set?

Search for nearest neighbor

Depending on the application, in  practice, this might 
not be an issue
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One extreme case: Mode collapse

Goal is to  generate fake examples imitating real samples

Simple solution is to just generate easy modes (classes).

38
Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial networks (2016).
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Performance evaluation

Check similarity between image distributions:

Mixing and coverage (diversity)

Saliency

Mode collapse or mode dropping

Overfitting (has the network memorized samples?) 

Need quantities that are invariant to small translation, rotation, 

intensity  changes 

Simple pixel space Euclidean distances don’t work

Define a way to map input into a feature space

Kullback-Leibler Divergence

Inception score

Maximum Mean Discrepancy 

Fréchet Inception Distance

Data

KLD

MMD

https://arxiv.org/pdf/1511.01844v2.pdf
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Applications
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Some HEP applications

LAGAN for Jet Images. (arxiv:1701.05927)

CaloGAN (arxiv:1705.02355)

GAN based LHCb Calorimeter simulation  (CHEP2018)

Generative models for ALICE TPC simulation (CHEP2018)

Conditional Wasserstein GANs for fast simulation of electromagnetic showers 
in a CMS HGCAL prototype (IML WG 04/18)

Variational AutoEncoders to simulate ATLAS LAr calorimeter (PASC18)

Wasserstein GANs to generate high-level physics variables based on Monte 
Carlo ttH (superfast-simulation) (IML WG 04/18)

Refining Detector Simulation using Adversarial Networks (IML WG 04/18)
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Location Aware GAN

Reproduce 2D generator level anti-kT jet images 

Inspired by DCGAN (convolutions) and ACGAN (uses 
particle type information)  

Image features:
Sparse

Location dependent features

Large dynamic range

42

arxiv:1701.05927

https://arxiv.org/abs/1701.05927
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CaloGAN

ATLAS LAr calorimeter

Heterogeneous longitudinal segmentation into 3 layers

Irregular granularity in eta and phi

Energy deposition in each layer as a 2D image

Build one LAGAN per layer

Trainable transfer unit to preserve layer correlations

Result is a concatenation of 2D images that 
reproduce full 3D picture

43

arxiv:1705.02355

https://arxiv.org/pdf/1705.02355.pdf


44

CaloGAN performance

Comparison to full simulation:

Average showers

Shape variables (depth, width, layer 
energy.. ) and event variables (sparsity 
level per layer)

Energy reconstruction
First hints at “extrapolation” capabilities

44
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LHCb Calorimeter fast simulation
Chekalina, CHEP2018

Wasserstein Convolutional GAN 
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Performance
Chekalina, CHEP2018
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Pierre Auger Observatory

Refining Simulation using GANs

Detection of UHECR E>1017.5 eV

Hybrid Technique

27 Fluorescence Telescopes

1660 Surface detectors

3000 km2 array size
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Energy reconstruction: Simulation

Showers: 70% electromagnetic 30% muonic

Refining Simulation using GANs

Energy reconstruction: Data

Showers: 30% electromagnetic 70% muonic

+ Increased noise
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Refining Simulation using GANs

Refiner: tries to refine the simulation to look 
like data

Critic: measure similarity between data / 
simulation

Feedback of critic improves refiner 
performance

Promising results to make DNN robust to 
data applications

Alternative application for continuous 
simulation scale factors

arXiv:1802.03325
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Refining Simulation using GANs
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A DL engine for fast simulation

Start with time consuming 

detectors

Next generation highly 

granular calorimeters

Train on detailed simulation

Test training on real data

Test different models

CNN, RNN, …

51

Design a tool that can be configured and trained for different detectors
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Is generative model output 
accurate enough? 

Can we sustain the increase in 
detector complexity?

How generic is this approach?

What portion of the original distribution 
do networks learn?

Can we “adjust” architecture to fit a 
larger class of detectors? 

What resources are needed?

52

A plan in two steps

• A first proof of concept

• Understand performance and 

validate accuracy

• Measure “coverage”

• Prove generalisation is possible

• Understand and optimise
computing resources

Intel
Parallel 
Computing 
Center  2017



5353

Proof of concept, benchmarking  and 
validation
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Compact LInear Collider

High-luminosity linear e+e- collider

Three energy stages up to 3 TeV

Electromagnetic calorimeter detector 
design

1.5 m inner radius

5 mm×5 mm segmentation
25 tungsten absorber layers +  silicon 

sensors

http://cds.cern.ch/record/2254048#

http://cds.cern.ch/record/2254048
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CLIC calorimeter simulation

1M single particle samples (e,γ,π)

Flat energy spectrum (10-500) GeV 

Orthogonal to detector surface

+/- 30° random incident angle

Images are highly segmented and sparse, large dynamic range 

Geant4 
shower 

25

2525

Data is essentially a 3D image 
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The model: 3D convolutional GAN

Similar discriminator and generator 

models

3d convolutions (keep X,Y 

symmetry)

Upsampling layers

Batch normalisation

Condition training on input particle

Auxiliary regression tasks assigned to 

the discriminator improve convergence

56
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Validation and optimisation

Detailed GAN vs GEANT4 comparison (More than 200 Plots! )

High level quantities (shower shapes)

Calorimeter response (single cell response)

Particle properties (primary particle energy)

Optimisation on 

Network Architecture (Layers, filters, kernels, initialisation) 

Losses definition  

Data pre-processing 

Rely on GAN losses only !! No physics variable explicitly constrained!

Results agree within a few % to Geant4 (labelled “DATA” in next slides ☺)

We are running reconstruction code on G4 and GAN samples 

57We run on Caltech ibanks GPU cluster thanks to Prof M. Spiropulu
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Electrons shower shapes

58

50GeV

400GeV 500GeV

100GeV

50GeV

500GeV

Orthogonal trajectory
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Single cell energy

Single cell energy represents 

greyscale pixel intensity in the 

“image interpretation”

Very large range

Pre-processing changes 

performance

Pixel dynamic range
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Neutral Pions

60

Log scale

X shape Y shape

Z shape
X shape Y shape

Z shape

10-500 GeV
Orthogonal trajectory
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Calorimeter sampling fraction 

61

Electrons Neutral Pions

GAN seems to slightly overestimate 

slightly neutral pions energy deposits
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Charged Pions
Charged pions have small energy 

deposits

Energy showers are delayed along Z 

62

Y shape

Z shape

X shape
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Variable incident angle

Wider/asymmetric image size (51x51x25):

63

XZYZ

XY

Electrons enter the calorimeter with a 60°-120° angle range

Adjust convolution parameters to improve 

energy description vs angle

Minimal architecture changes

Preliminary

Y shower shapes 

for different angles 
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Variable incident angle (II)

Total deposited energy (relative error) Single cell energy
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Computing resources

Distributed training

65
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Computing resources: Fast!

Single node performance. 

Inference:

On Intel Xeon speedup factor is  >2000

On NVIDIA P100  speedup > 4∙105 

Training:

45 min/epoch on NVIDIA P100

200K Geant4 events are needed for training

Using a trained model is very fast

Time to create an electron shower

Method Machine
Time/Shower

(msec)

MC Simulation 
(geant4)

Intel Xeon 
Platinum 8180

17000

3D GAN
(batch size 128)

Intel Xeon 
Platinum 8180

7

3D GAN
(batch size 128)

NVIDIA P100 0.04
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Distributed Training

• Data distribution

• Compute gradients on several batches 
independently

• Update the model synchronously or async

• Applicable to large dataset

• Gradient distribution
• Compute the gradient of one batch in parallel

• Update the model with the aggregated gradient.

• Applicable to large sample  (large events)

• Model distribution
• Compute the gradient and updates of part of the 

model separately 

• Applicable to large model

Data Model:



68

Data distribution
HPC friendly!

Data

BatchSize=1000

BatchSize=4000

BatchSize=10000

Run on TACC Stampede2 cluster:

• Dual socket Intel Xeon 8160

• 2x 24 cores per node, 192 GB RAM

• Intel® Omni-Path Architecture

Keras + Tensorflow 1.9

Study performance degradation
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Generalisation & Development
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Understanding performance and 
coverage

Sanjeeva Arora, ICCV 2017

Test different performance figures:

Features-based

Pixel-based

“Inception-like”

Understand coverage
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Generalisation to different calorimeters

•Our baseline is an example of next generation highly 

granular calorimeter

•Extend to other cases 

•FCC LAr calorimeter

•CALICE SDHCAL

•HGCAL

•Explore optimal network topology according to the 

problem to solve

• Hyper-parameters tuning and meta-optimization

• mpi_learn/mpi_opt

71

SDHCAL prototype during SPS test beam
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TAPAS: Train-less Accuracy Predictor for Architecture Search

Determine and train the best CNN configuration for the simulation of a specific 
detector. 

input : detailed simulation of the detector and the detector parameters

Output: a trained CNN with optimal parameters for the problem at hand. 

An automated approach to determine optimal network architectures, with a low amount 

of training

https://arxiv.org/pdf/1806.00250.pdf

EFFICIENTLY scales in a few seconds 
over a large number of networks.
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Summary and Plan

Deep Learning is a powerful approach to solve many problems in society, 

industry and science

Thanks to the availability of data and computing resources

R&D on Generative Models is extremely active

Promising approach to solve the “fast simulation problem” 

More work is needed to fully understand performance and limits of the approach

And choose the applicabilty range!

Many promising applications in our field

Our fastsim R&D project has reached very good results

Work on-going to detail performance

Collaboration within and beyond the HEP community is essential!
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GANs for earth observation

Train Progressively Growing GANs on 
UNOSAT Rukban Camp Dataset.

Preliminary test shows encouraging 
results

GAN generated tiles of 256x256 pixels

Further steps: 

Assess accuracy and image fidelity 

Measure sample variance

Scale up to  ~1M pixels

Generate multi-spectral images 

S.P. Mohanty
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Thanks!
Questions?
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Improvement of learning on a new 
task, transferring the knowledge 
already learned on a similar task

Might be the only option given the 
amount of resources needed from 
training

Carefully choose how much of the 
pre-trained model to use in new one

CNN features are more generic in early 
layers and more dataset-specific in later 
layers

“Transfer learning and domain adaptation refer to the situation where what has been 
learned in one setting … is exploited to improve generalization in another setting”

Page 526, Deep Learning, 2016.

Transfer learning
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Representational power

NN with at least one hidden layer are universal approximators

http://neuralnetworksanddeeplearning.com/chap4.html

Or Approximation by Superpositions of Sigmoidal Function

Playing with the w, b parameters we 

can modify the shape of the sigmoid

http://neuralnetworksanddeeplearning.com/chap4.html
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
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Representational power

We can add nodes and introduce “steps” 

http://neuralnetworksanddeeplearning.com/chap4.html

Or Approximation by Superpositions of Sigmoidal Function

http://neuralnetworksanddeeplearning.com/chap4.html
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
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Representational power

NN with a single 
hidden layer can 
be used to 
approximate any 
continuous function 
to any desired 
precision

http://neuralnetworksanddeeplearning.com/chap4.html

Or Approximation by Superpositions of Sigmoidal Function

Increasing complexity

http://neuralnetworksanddeeplearning.com/chap4.html
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
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Two classes classification: 

(OR function) (linearly separable)
Exclusive OR is an example of a non 
linearly separable patter:

A single layer perceptron can categorize “linearly separable” patterns

The need for depth

(tutorial) http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
(images)http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
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The need for depth

(tutorial) http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
(images)http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html

Need a Multi-Layer architecture to solve the ex OR problem:

Two-stages approach
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A simple visual example

Back-propagation
Forward pass computes values 

from inputs to output

X = -2, Y = 5, Z = -4

How does a change in Y affect f?

Calculate (forward) derivatives

OR 

use backward derivatives: starts 

at the end and recursively applies 

the chain rule
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A simple visual example

Back-propagation
Forward pass computes values 

from inputs to output

X = -2, Y = 5, Z = -4

How does a change in Y affect f?

Calculate (forward) derivatives

OR 

use backward derivatives: starts 

at the end and recursively applies 

the chain rule
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Backward derivatives approach is much more efficient in the case of large 
graphs

Because of the chain rules, at each step the derivative depends only 

On the derivatives already calculated for the parent nodes 

On the node values calculated during the forward pass

Gradients flow “backward” through the graph

A visual example

Back-propagation
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Wasserstein GAN

Also called Earth-Mover-Distance:

Interpret one distribution as target, one as earth heap

Distance of distributions = effort to move earth heap to target (mass x 
distance)
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Performance metrics

Kullback-Leibler divergence: 

Inception score: use Google Inception network (Szegedy et al., 2016), pre-
trained on the ImageNet (Deng et al., 2009) dataset

Maximum Min Discrepancy: measures dissimilarity between two 
distributions for some fixed kernel function

Fréchet Inception Distance: compares mean and covariance of real and 
GAN probability distribution
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Counting shelters in refugee camps
CERN openlab and UNOSAT collaboration

(UN Operational Satellite Applications Centre)

Scan million pixels satellite photos for 

disaster relief:

Evolution of refugee camps

Natural disasters

Building damage

Because of the high level of precision 

required 

it’s done MANUALLY!!!!
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Counting shelters in refugee camps

Why not use CNN instead??

CERN openlab and UNOSAT collaboration
(UN Operational Satellite Applications Centre)

Transfer learning from RCNN model

Average precision is 82%

Speedup  is x200

https://indico.cern.ch/event/727274/contributions/3100369/


