Discussion on global fits

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS, Univ. Paris-Sud, Universite Paris-Saclay, 91405 Orsay, France ´

GdR-InF annual meeting, Arles 07/11/18

Two transitions of interest

Two transitions exhibiting interesting patterns of deviations from SM

Starting from SM (or extensions) and integrating out heavy/energetic degrees of freedom

 $\mathcal{H}^{\text{eff}} = \mathbf{CKM} \times \mathcal{C}_i \times \mathcal{O}_i$ $\langle M|\mathcal{H}^{\text{eff}}|B\rangle$ = *CKM* × C_i × $\langle M|O_i|B\rangle$

Starting from SM (or extensions) and integrating out heavy/energetic degrees of freedom

$$
\mathcal{H}^{\text{eff}} = CKM \times C_i \times O_i
$$

$$
\langle M | \mathcal{H}^{\text{eff}} | B \rangle = CKM \times C_i \times \langle M | O_i | B \rangle
$$

Starting from SM (or extensions) and integrating out heavy/energetic degrees of freedom

$$
\mathcal{H}^{\text{eff}} = CKM \times C_i \times O_i
$$

$$
\langle M | \mathcal{H}^{\text{eff}} | B \rangle = CKM \times C_i \times \langle M | O_i | B \rangle
$$

- involving hadronic quantities such as form factors (and others) selecting processes for accurate predictions:
	- **•** semileptonic decays (form factors, not more complicated objects)
	- ratios of branching ratios with different leptons
	- ratios of observables with similar dependence on form factors

=⇒observables with limited sensitivity to (ratio of form) factors

Starting from SM (or extensions) and integrating out heavy/energetic degrees of freedom

$$
\mathcal{H}^{\text{eff}} = CKM \times C_i \times O_i
$$

$$
\langle M | \mathcal{H}^{\text{eff}} | B \rangle = CKM \times C_i \times \langle M | O_i | B \rangle
$$

involving hadronic quantities such as form factors (and others) selecting processes for accurate predictions:

- **•** semileptonic decays (form factors, not more complicated objects)
- ratios of branching ratios with different leptons
- ratios of observables with similar dependence on form factors =⇒observables with limited sensitivity to (ratio of form) factors

Two possible uses of effective approaches

- fixing \mathcal{C}_{l} , computing SM and comparing with the data
- determining \mathcal{C}_i from the data and compare with SM or NP models

How various analyses can differ ?

- Statistical treatment (Bayesian vs frequentist)
- **•** Form factors
	- low *q* 2 /large-meson recoil: light-cone sum rules (LCSR)
	- large *q* 2 /low-meson recoil: lattice QCD (LQCD)
- Other hadronic inputs (intermediate resonances. . .)
- \bullet Help (or not) from effective theories ($m_b \rightarrow \infty$)
	- low *q* 2 /large-meson recoil: Soft-Collinear Effective Theory (SCET)
	- large *q* 2 /low-meson recoil: Heavy Quark Effective Theory (HQET)
- \bullet Sticking to one particular quark decay (e.g., $b \rightarrow s \mu \mu$ only) or trying to connect several of them through assumptions/symmetries
- NP scenarios considered
	- \bullet in all C_i or only some of them ?
	- \bullet correlating NP contributions among C_i ?
	- including imaginary parts or not?
	- only violating lepton universality or also lepton universal?

$b \to c \ell \bar{\nu}_{\ell}$ effective Hamiltonian

 $\mathcal{H}^{\text{eff}}(b \to c \ell \nu) \propto G_F V_{cb} \sum \mathcal{C}_i \mathcal{O}_i$

$\bm{b}\to\bm{c}\ell\bar\nu_\ell$ effective Hamiltonian

 $\mathcal{H}^{\text{eff}}(b \to c\ell\nu) \propto G_F V_{cb} \sum \mathcal{C}_i \mathcal{O}_i$

$b \rightarrow c \ell \bar{\nu}_{\ell}$ effective Hamiltonian

$$
\mathcal{H}^{\rm eff}(b\to c\ell\nu)\propto G_F V_{cb}\sum \mathcal{C}_i\mathcal{O}_i
$$

- o In the SM
	- $\mathcal{O}_{V_L} = (\bar{c}\gamma^{\mu}P_Lb)(\bar{\ell}\gamma_{\mu}P_L\nu_{\ell})$ [*W* exchange]
	- $C_{V_L} = 1$ and universal for all three leptons
- Hadronic uncertainties all summarised in form factors defined from $\langle M|\mathcal{O}_i|B\rangle$

$b \to c \ell \bar{\nu}_{\ell}$ effective Hamiltonian

$$
\mathcal{H}^{\rm eff}(b\to c\ell\nu)\propto G_F V_{cb}\sum \mathcal{C}_i\mathcal{O}_i
$$

- o In the SM
	- $\mathcal{O}_{V_L} = (\bar{c}\gamma^{\mu}P_Lb)(\bar{\ell}\gamma_{\mu}P_L\nu_{\ell})$ [*W* exchange]
	- $C_{V_L} = 1$ and universal for all three leptons
- Hadronic uncertainties all summarised in form factors defined from $\langle M|\mathcal{O}_i|B\rangle$
- NP changes short-distance C*ⁱ* for SM or new long-distance ops O*ⁱ*
- $\mathcal{O}_{V_L} \rightarrow \mathcal{O}_{V_R} \propto (\bar{c}\gamma)$
- \bullet (Pseudo)scalar ($W \rightarrow H^+$)
- \bullet Tensor operators ($W \rightarrow T$)

 $^{\mu}P_{R}b)(\bar{\ell}\gamma_{\mu}P_{L}\nu_{\ell})$ $(\overline{C}P_L\nu_\ell), \mathcal{O}_{S_R}$
 $(\overline{C}P_Lb)(\overline{\ell}P_L\nu_\ell), \mathcal{O}_{S_R}$ $\mu\nu P_L b) (\bar{\ell} \sigma_{\mu\nu} P_L \nu_{\ell})$

$\bm{b}\to \bm{c} \ell \bar{\nu}_{\ell}$ typical observables

$$
B \rightarrow D^* \ell \nu
$$
\n
$$
B \rightarrow D \ell \nu
$$
\n
$$
B \rightarrow D \ell \nu
$$
\n
$$
B \rightarrow D \ell \nu
$$
\n
$$
B \rightarrow \ell
$$

 $\ell = e, \mu$ (integrated over all phase space)

Hadronic uncertainties

- $B \to D \ell \bar{\nu}_{\ell}$ branching ratios
	- \bullet SM: 2 form factors f_{+} (vector) and f_0 (scalar)
	- NP: 1 more f_T (tensor)
	- **•** From lattice QCD, extrapolated over whole kinematic range

[HPQCD, FNAL/MILC collaborations]

Hadronic uncertainties

 $\mathcal{B} \rightarrow D^* \ell \bar{\nu}_{\ell}$ branching ratios

- $B \to D \ell \bar{\nu}_{\ell}$ branching ratios
	- \bullet SM: 2 form factors f_{+} (vector) and f_0 (scalar)
	- NP: 1 more f_T (tensor)
	- From lattice QCD, extrapolated over whole kinematic range

[HPQCD, FNAL/MILC collaborations]

- \bullet 4 form factors *V*, $A_{0,1,2}$ (vector/axial) + NP: 3 more $T_{1,2,3}$ (tensor)
- No complete lattice determination **Interpretental Complete** Intervalsion *[Fajfer, Kamenik, Nisandzic]*
	- Belle: $B \to D^* \ell \bar{\nu}_{\ell}$ ($\ell = e, \mu$) form factors, assuming no NP [Jung, Straub]
	- Supplemented by HQET considerations
		- relations in the limit $m_b \to \infty$, normalisation in the no-recoil limit
		- corrections to be estimated with theoretical prejudices (CLN param)
	- Or fit using a generic polynomial *z*-expansion (BGL param)
	- Ongoing discussion, potential impact on |*Vcb*| but not much on *RD*[∗]

[Bigi, Gambino, Schacht; Grinstein, Koback; Bernlochner, Ligeti, Papucci, Robinson]

Further data and questions

- $R_{J/\psi}$ ($B_c \rightarrow J/\psi \ell \bar{\nu}_\ell$)
	- LHCb measurement low compared to theoretical estimates, and rather interestingly

$$
\frac{R_D}{R_{D;SM}}\simeq \frac{R_{D^*}}{R_{D^*;SM}}\simeq \frac{R_{J/\psi}}{R_{J/\psi;SM}}
$$

• But current estimates of the form factors mainly based on models with uncertainties difficult to assess (compared to R_D and R_{D*})

Potential issues

- Cross-checks of the form factors would be very welcome !
- Radius corrs 3-4% for $E^\mathrm{cut}_\gamma=$ 20 $-$ 40 MeV $\;\;\;\;$ [De Boer, Kitahira, Nisandzic]
- Width of the *D* ∗ *[Chavez-Saab, Toledo; Le Yaouanc, Leroy, Roudeau]*
	- Contribution from longitudinal polarisation to *R^D*[∗] ?
		- \Longrightarrow Possibly shift \simeq 9% in SM direction,

potentially reducing discrepancy from 3.4 σ to 2.2 σ

Tail of D^* at high $D\pi$ mass contributing to $B\to [D\pi]_{\rm broad} \ell\nu_{\ell}$?

Global fits in $b \to c \ell \bar{\nu}_{\ell}$

[Bhattacharyaa,Nandi,Patra;Alok,Kumar,Kumar,Kumbhakar,Uma Sankar;Kumar,London,Watanabe;Freytsis,Ligeti,Ruderman]

- **•** Often NP only for $\ell = \tau$, assuming real Wilson coefficients (no CP violation), but some studies with also imaginary contributions
- Right-handed and (pseudo)scalar couplings disfavoured by *B^c* width (bound on $B_c \rightarrow \tau \nu$) and shape of $d \mathsf{\Gamma}(B \rightarrow D^* \tau \nu)/d q^2$
- **•** Tensor could describe the data, strong impact on P_{τ} and f_L
- Most simple explanation: NP in ${\cal C}_{V_L\tau},$ change of G_{\digamma} for $b\to c\tau\bar\nu_{\tau}$

R^D and *RD*[∗] not enough: more observables (angular analysis !)

$$
\mathcal{H}(b \to s\gamma(^*)) \propto G_F V_{ts}^* V_{tb} \sim \mathcal{C}_i \mathcal{O}_i
$$

to separate short and long distances ($\mu_b = m_b$)

to separate short and long distances ($\mu_b = m_b$)

$$
\mathcal{H}(b\to s\gamma(^*))\propto G_FV^*_{\mathit{ts}}V_{\mathit{tb}}\sim \mathcal{C}_i\mathcal{O}_i
$$

to separate short and long distances $(\mu_b = m_b)$ $\mathcal{O}_7=\frac{e}{g^2}$ $\frac{e}{g^2} m_b$ $\bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu}$ b \quad [real or soft photon]

 $B \upharpoonright \mathfrak{A}$ \mathfrak{A}° $\qquad \qquad \downarrow M \upharpoonright$ l^+ ℓ[−] c, t $W_{\mathcal{A}}$ $b \left(\ldots \right)$ s \bigcap and \bigwedge^{ω} and \bigwedge^{ω} and \bigwedge^{ω} ℓ[−] $B \upharpoonright \mathfrak{A}$ \mathfrak{A}° $\smile \qquad \downarrow M$ ℓ^+ ℓ[−] $O_{9,10,9',10'...}$ $\mathcal{H}(b \to s \gamma({}^*)) \propto G_F V^*_{ts} V_{tb} \sim \mathcal{C}_i \mathcal{O}_i$ to separate short and long distances $(\mu_b = m_b)$ $\mathcal{O}_7=\frac{e}{g^2}$ $\frac{e}{g^2} m_b$ $\bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu}$ b \quad [real or soft photon] $\mathcal{O}_9=\frac{e^2}{g^2}$ $\frac{e^2}{g^2} \bar{s}\gamma_\mu$ (1 – $\gamma_5) b\ \bar{\ell} \gamma^\mu \ell^{} \;$ [*b* \rightarrow *s* $\mu\mu$ via *Z*/hard $\gamma\ldots$] ${\cal O}_{10}=\frac{e^2}{g^2}$ $\frac{e^2}{g^2} \bar{s}\gamma_\mu (1-\gamma_5)b\ \bar{\ell}\gamma^\mu\gamma_5\ell \ \ \ \ \ [b\to s\mu\mu$ via *Z*] $\mathcal{C}_7^{\rm SM} = -0.29, \; \mathcal{C}_9^{\rm SM} = 4.1, \; \mathcal{C}_{10}^{\rm SM} = -4.3$

1 NP changes short-distance C*ⁱ* or add new operators O*ⁱ*

- Chirally flipped ($W \rightarrow W_R$)
- \bullet (Pseudo)scalar ($W \rightarrow H^+$)
-

 $\nu \propto \bar{s} \sigma^{\mu\nu} (1-\gamma_5) F_{\mu\nu}$ b $\mathcal{O}_9, \mathcal{O}_{10} \rightarrow \mathcal{O}_S \propto \bar{s}(1 + \gamma_5) b \bar{\ell} \ell, \mathcal{O}_P$ Tensor operators $(\gamma \to T)$ $\qquad \qquad {\cal O}_9 \to {\cal O}_T \propto {\bar s} \sigma_{\mu\nu} (1-\gamma_5) b \; \bar\ell \sigma_{\mu\nu} \ell$

$b \rightarrow s \ell \ell$ typical observables

binned in most cases, sometimes with CP asymmetries

S. Descotes-Genon (LPT-Orsay) [Global fits](#page-0-0) GdR-InF 2018 11

Two sources of hadronic uncertainties

$$
A(B \to M\ell\ell) = \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^*[(A_\mu + T_\mu) \bar{u}_\ell \gamma^\mu v_\ell + B_\mu \bar{u}_\ell \gamma^\mu \gamma_5 v_\ell]
$$

Two sources of hadronic uncertainties

Local contributions (more terms if NP in non-SM \mathcal{C}_i): form factors

$$
A_{\mu} = -\frac{2m_bq^{\nu}}{q^2}C_7\langle M|\bar{s}\sigma_{\mu\nu}P_Bb|B\rangle + C_9\langle M|\bar{s}\gamma_{\mu}P_Lb|B\rangle
$$

\n
$$
B_{\mu} = C_{10}\langle M|\bar{s}\gamma_{\mu}P_Lb|B\rangle
$$

S. Descotes-Genon (LPT-Orsay) [Global fits](#page-0-0) GdR-InF 2018 12

Two sources of hadronic uncertainties

Local contributions (more terms if NP in non-SM \mathcal{C}_i): form factors

$$
A_{\mu} = -\frac{2m_bq^{\nu}}{q^2}C_7\langle M|\bar{s}\sigma_{\mu\nu}P_Bb|B\rangle + C_9\langle M|\bar{s}\gamma_{\mu}P_Lb|B\rangle
$$

\n
$$
B_{\mu} = C_{10}\langle M|\bar{s}\gamma_{\mu}P_Lb|B\rangle
$$

Non-local contributions (charm loops): hadronic contribs.

 T_μ contributes like $\mathcal{O}_{7,9}$, but depends on q^2 and external states

Hadronic uncertainties: form factors

3 form factors for K , 7 form factors for K^* and ϕ

- **IDU RECOIL: Lattice, with correlations** [Horgan, Liu, Meinel, Wingate; HPQCD collab]
- **.** large recoil: B-meson Light-Cone Sum Rule,
	- large error bars and no correlations [Khodjamirian, Mannel, Pivovarov, Wang] recently reanalysed with correlations [Gubernari, Kokulu, van Dyk]
- all:fit light-meson LCSR + lattice, small errs, correls [Bharucha, Straub, Zwicky]

Hadronic uncertainties: form factors

3 form factors for K , 7 form factors for K^* and ϕ

- **IDU RECOIL: Lattice, with correlations** [Horgan, Liu, Meinel, Wingate; HPQCD collab]
- **.** large recoil: B-meson Light-Cone Sum Rule,
	- large error bars and no correlations [Khodjamirian, Mannel, Pivovarov, Wang] recently reanalysed with correlations [Gubernari, Kokulu, van Dyk]
- all:fit light-meson LCSR + lattice, small errs, correls [Bharucha, Straub, Zwicky]

form factors discussed and all approaches in good agreement former controversies about EFT to obtain/restore correlations for

[Jäger, Camalich; Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]

Charm loops

- important for resonance regions (charmonia)
- SM effect contributing to $C₉$
- expected to depend on *q* 2
- . . . but lepton universal (little effect on R_K , even with NP)

Charm loops

- important for resonance regions (charmonia)
- SM effect contributing to $C₉$
- expected to depend on *q* 2
- . . . but lepton universal (little effect on R_K , even with NP)
- Several theo/pheno approaches
	- LCSR estimate **[Khodjamirian, Mannel, Pivovarov, Wang]**
	- \bullet order of magnitude estimate for the fits (LCSR or Λ/m_b), check with bin-by-bin fits [Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]
	- **The fit of sum of resonances to the data Example: Equate, Eggede, Owen, Pomery, Petridis**

Charm loops

- important for resonance regions (charmonia)
- SM effect contributing to $C₉$
- expected to depend on *q* 2
- . . . but lepton universal (little effect on R_K , even with NP)

Several theo/pheno approaches

• LCSR estimate **[Khodjamirian, Mannel, Pivovarov, Wang]**

- \bullet order of magnitude estimate for the fits (LCSR or Λ/m_b), check with bin-by-bin fits [Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]
- **The fit of sum of resonances to the data Example: Equate, Eggede, Owen, Pomery, Petridis**
- fit of *q* 2 -parametrisation to the data
- [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Capdevila, SDG, Hofer, Matias] **dispersive representation +** J/ψ **,** $\psi(2S)$ **data** [Bobeth, Chrzaszcz, van Dyk, Virto]

Charm loops

- important for resonance regions (charmonia)
- SM effect contributing to $C₉$
- expected to depend on *q* 2
- . . . but lepton universal (little effect on R_K , even with NP)

Several theo/pheno approaches

• LCSR estimate **[Khodjamirian, Mannel, Pivovarov, Wang]**

- \bullet order of magnitude estimate for the fits (LCSR or Λ/m_b), check with bin-by-bin fits [Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]
- fit of sum of resonances to the data **[Blake, Egede, Owen, Pomery, Petridis]**
- fit of *q* 2 -parametrisation to the data [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Capdevila, SDG, Hofer, Matias]
- **dispersive representation +** J/ψ **,** $\psi(2S)$ **data** [Bobeth, Chrzaszcz, van Dyk, Virto]

No hint in the fits of missing large q^2 -dependent contribution

S. Descotes-Genon (LPT-Orsay) and [Global fits](#page-0-0) Global fits GdR-InF 2018 14

Global fits in $b \to s \ell \ell$

 \bullet 175 obs in reapdevila, Crivellin, SDG, Matias, Virtol. agree well with other global fits

[Straub, Stang], Altmannshoffer: Hurth, Mahmoudi, Neshatpour: Geng, Grinstein, Jäger, Camalich, Ben, Shi I

- Real contributions, based on absence of CP violation
- Favoured $C_{9\mu}^{NP} \simeq O(-1)$ + smaller corrections to other C_1
- \circ $C_{9\mu}^{NP} = -C_{10\mu}^{NP}$ also good scenario (NP models with $SU(2)_L$)
- · Overall consistency (All vs LFUV obs, channels, Brs vs angular)

S. Descotes-Genon (LPT-Orsay)

Are we general enough?

 $C_{i\ell}^{NP}$ $\ell = e, \mu, \tau$ not related, to be fixed by data (scarce for e, none for τ)

• Often no NP assumed in $b \rightarrow$ see, but still room (eq NP in $C_{9\mu}, C_{9\rho}$)

- 4-par best-fit pt $(C_{9e}, C_{9\mu}, C_{10e}, C_{10\mu})^{NP} = -1.26, -1.18, 1.14, 0.23$
- Possibility of large LFU NP contribs, with preference for $V A$ LFUV but $V + A$ for LFU [Algueró, Capdevila, SDG, Masiuan, Matias]

$b \to c \ell \bar{\nu}_{\ell}$ and $b \to s \ell \ell$ combined analysis

- **•** SMEFT: NP higher-dim ops obeying $SU_C(3) \times SU_L(2) \times U_Y(1)$
• Restrictive (but reasonable) assumptions Fundazzo, Grelio, Isidroi, Marzoccal
- Restrictive (but reasonable) assumptions

- Only left-handed fields
- No lepton-flavour violating contributions
- $U(2)_q \times U_{\ell}(2)$ symmetry for couplings with same structure

$$
\begin{split} \lambda^q_{ij} \lambda^{\ell}_{ab} & \Bigg[\frac{C_S}{\Lambda^2} (\bar{Q}^i_{L} \gamma_{\mu} Q^j_{L}) (\bar{L}^a_{L} \gamma^{\mu} L^b_{L}) \\ & + \frac{C_T}{\Lambda^2} (\bar{Q}^j_{L} \gamma_{\mu} \sigma^{\alpha} Q^j_{L}) (\bar{L}^a_{L} \gamma^{\mu} \sigma^{\alpha} L^b_{L}) \Bigg] \\ Q^j_{L} & = \begin{pmatrix} V^*_{ji} u^j_{L} \\ d^j_{L} \end{pmatrix} \qquad L^a_{L} = \begin{pmatrix} \nu^a_{L} \\ \ell^a_{L} \end{pmatrix} \end{split}
$$

Single-mediator models and more

[Butazzo, Greljo, Isidroi, Marzocca]

- Disfavours colourless vectors (W', Z', green) and coloured scalars (*S*1, *S*³ leptoquarks, blue) + high p_T constraints
- **•** Favours U_1 vector leptoquark $(3, 1, 2/3)$, which also passes direct LHC production limits
- Same conclusions taking a general structure of the **COUPLINGS** [Kumar, London, Watanabe]

Possible to consider models with more than 1 mediator

- Two scalar leptoquarks
- **•** Three-generation Pati-Salam
- **•** Composite models

```
. . . [See P. Stangl's talk]
```
Outlook

- $b\to s\ell^+\ell^-$ and $b\to c\ell\bar\nu_\ell$
	- Many observables, more or less sensitive to hadronic unc.
	- Global fit to $b \to c \ell \bar{\nu}$ still relying on limited amount of information, with questions on hadronic uncertainties (form factors, *D* ∗ width)
	- Global fit to $b \to s\ell^+\ell^-$ in favour of large deviation for \mathcal{C}_9 in $b \rightarrow s \mu \mu$ and does not seem to favour hadronic explanations
	- Global fits of both sets using SMEFT, with many models proposed for either or both sets of deviations
	- Several tools to perform some fits (flavio, EOS, Hammer...)

Where to go ?

- Better measurements of *q* ² and angular dependence
- **•** More info on processes with *e* and/or *τ*
- Other LFU violating observables
- Provide lattice form factors over larger range
- Further constraints on *cc* loops
- New observables (CP-violation, time-dep, LFUV and LFV obs. . .)