Discussion on global fits

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

GdR-InF annual meeting, Arles 07/11/18

Two transitions of interest

Two transitions exhibiting interesting patterns of deviations from SM

Starting from SM (or extensions) and integrating out heavy/energetic degrees of freedom

$$\mathcal{H}^{\text{eff}} = CKM \times C_i \times \mathcal{O}_i$$
$$\langle M | \mathcal{H}^{\text{eff}} | B \rangle = CKM \times C_i \times \langle M | \mathcal{O}_i | B \rangle$$

Starting from SM (or extensions) and integrating out heavy/energetic degrees of freedom

$$\mathcal{H}^{\text{eff}} = CKM \times C_i \times \mathcal{O}_i$$

$$\langle M | \mathcal{H}^{\text{eff}} | B \rangle = CKM \times C_i \times \langle M | \mathcal{O}_i | B \rangle$$

Starting from SM (or extensions) and integrating out heavy/energetic degrees of freedom

$$\begin{aligned} \mathcal{H}^{\text{eff}} &= CKM \times \mathcal{C}_i \times \mathcal{O}_i \\ \langle M | \mathcal{H}^{\text{eff}} | B \rangle &= CKM \times \mathcal{C}_i \times \langle M | \mathcal{O}_i | B \rangle \end{aligned}$$

involving hadronic quantities such as form factors (and others) selecting processes for accurate predictions:

- semileptonic decays (form factors, not more complicated objects)
- ratios of branching ratios with different leptons
- ratios of observables with similar dependence on form factors

⇒observables with limited sensitivity to (ratio of form) factors

Starting from SM (or extensions) and integrating out heavy/energetic degrees of freedom

$$\mathcal{H}^{\text{eff}} = CKM \times C_i \times \mathcal{O}_i \langle M | \mathcal{H}^{\text{eff}} | B \rangle = CKM \times C_i \times \langle M | \mathcal{O}_i | B \rangle$$

involving hadronic quantities such as form factors (and others) selecting processes for accurate predictions:

- semileptonic decays (form factors, not more complicated objects)
- ratios of branching ratios with different leptons
- ratios of observables with similar dependence on form factors

 ⇒observables with limited sensitivity to (ratio of form) factors

Two possible uses of effective approaches

- fixing C_i , computing SM and comparing with the data
- \bullet determining \mathcal{C}_i from the data and compare with SM or NP models

How various analyses can differ ?

- Statistical treatment (Bayesian vs frequentist)
- Form factors
 - low q²/large-meson recoil: light-cone sum rules (LCSR)
 - large *q*²/low-meson recoil: lattice QCD (LQCD)
- Other hadronic inputs (intermediate resonances...)
- Help (or not) from effective theories $(m_b \to \infty)$
 - low q²/large-meson recoil: Soft-Collinear Effective Theory (SCET)
 - large q²/low-meson recoil: Heavy Quark Effective Theory (HQET)
- Sticking to one particular quark decay (e.g., b → sµµ only) or trying to connect several of them through assumptions/symmetries
- NP scenarios considered
 - in all C_i or only some of them ?
 - correlating NP contributions among C_i ?
 - including imaginary parts or not ?
 - only violating lepton universality or also lepton universal ?

 $\mathcal{H}^{ ext{eff}}(b
ightarrow \textit{cl}
u) \propto \textit{G}_{\textit{F}}\textit{V}_{\textit{cb}} \sum \mathcal{C}_{\textit{i}} rac{\mathcal{O}_{\textit{i}}}{\mathcal{O}_{\textit{i}}}$

$$\mathcal{H}^{ ext{eff}}(b
ightarrow m{c} \ell
u) \propto G_{F} V_{cb} \sum \mathcal{C}_{i} \mathcal{O}_{i}$$

$$\mathcal{H}^{ ext{eff}}(b
ightarrow \textit{c}\ell
u) \propto \textit{G}_{\textit{F}}\textit{V}_{\textit{cb}}\sum \mathcal{C}_{\textit{i}}\mathcal{O}_{\textit{i}}$$

- In the SM
 - $\mathcal{O}_{V_L} = (\bar{c}\gamma^{\mu}P_Lb)(\bar{\ell}\gamma_{\mu}P_L\nu_{\ell})$ [*W* exchange]
 - $C_{V_L} = 1$ and universal for all three leptons
- Hadronic uncertainties all summarised in form factors defined from ⟨*M*|*O_i*|*B*⟩

$$\mathcal{H}^{ ext{eff}}(b
ightarrow \textit{cl}
u) \propto \textit{G}_{\textit{F}}\textit{V}_{\textit{cb}} \sum \mathcal{C}_{\textit{i}} \mathcal{O}_{\textit{i}}$$

- In the SM
 - $\mathcal{O}_{V_L} = (\bar{c}\gamma^{\mu}P_Lb)(\bar{\ell}\gamma_{\mu}P_L\nu_{\ell})$ [*W* exchange]
 - $C_{V_L} = 1$ and universal for all three leptons
- Hadronic uncertainties all summarised in form factors defined from ⟨*M*|*O_i*|*B*⟩
- NP changes short-distance C_i for SM or new long-distance ops O_i
- Chirally flipped ($W \rightarrow W_R$)
- (Pseudo)scalar ($W \rightarrow H^+$)
- Tensor operators ($W \rightarrow T$)

 $\begin{array}{c} \mathcal{O}_{V_L} \to \mathcal{O}_{V_R} \propto (\bar{c}\gamma^{\mu}P_Rb)(\bar{\ell}\gamma_{\mu}P_L\nu_{\ell}) \\ \mathcal{O}_{V_L} \to \mathcal{O}_{S_L} \propto (\bar{c}P_Lb)(\bar{\ell}P_L\nu_{\ell}), \mathcal{O}_{S_R} \\ \mathcal{O}_{V_I} \to \mathcal{O}_{T_I} \propto (\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\ell}\sigma_{\mu\nu}P_L\nu_{\ell}) \end{array}$

$b ightarrow c\ellar u_\ell$ typical observables

$$\begin{array}{ll} B \to D^* \ell \nu & R_D = \frac{Br(B \to D\tau\nu)}{Br(B \to D\ell\nu)} \\ B \to D\ell\nu & R_{D^*} = \frac{Br(B \to D^*\tau\nu)}{Br(B \to D^*\ell\nu)}, \ P_\tau, \ f_L(D^*) \\ B \to J/\psi\ell\nu & R_{J/\psi} = \frac{Br(B_c \to J/\psi\tau\nu)}{Br(B_c \to J/\psi\ell\nu)} \\ B_c \to \tau\nu & Br(B_c \to \tau\nu) \ [\text{bound from } \Gamma(B_c)] \end{array}$$

 $\ell = e, \mu$ (integrated over all phase space)

Hadronic uncertainties

- $B
 ightarrow D \ell ar{
 u}_\ell$ branching ratios
 - SM: 2 form factors *f*₊ (vector) and *f*₀ (scalar)
 - NP: 1 more f_T (tensor)
 - From lattice QCD, extrapolated over whole kinematic range

[HPQCD, FNAL/MILC collaborations]

Hadronic uncertainties

 $B
ightarrow D^* \ell \bar{
u}_\ell$ branching ratios

- $B
 ightarrow D \ell ar
 u_\ell$ branching ratios
 - SM: 2 form factors *f*₊ (vector) and *f*₀ (scalar)
 - NP: 1 more *f*_T (tensor)
 - From lattice QCD, extrapolated over whole kinematic range

[HPQCD, FNAL/MILC collaborations]

- 4 form factors V, $A_{0.1,2}$ (vector/axial) + NP: 3 more $T_{1,2,3}$ (tensor)
- No complete lattice determination
 [Fajfer, Kamenik, Nisandzic]
 - Belle: $B \rightarrow D^* \ell \bar{\nu}_\ell$ ($\ell = e, \mu$) form factors, assuming no NP [Jung, Straub]
 - Supplemented by HQET considerations
 - relations in the limit $m_b
 ightarrow \infty$, normalisation in the no-recoil limit
 - corrections to be estimated with theoretical prejudices (CLN param)
 - Or fit using a generic polynomial *z*-expansion (BGL param)
 - Ongoing discussion, potential impact on $|V_{cb}|$ but not much on R_{D^*}

[Bigi, Gambino, Schacht; Grinstein, Koback; Bernlochner, Ligeti, Papucci, Robinson]

Further data and questions

- $R_{J/\psi}~(B_c
 ightarrow J/\psi \ell ar{
 u}_\ell)$
 - LHCb measurement low compared to theoretical estimates, and rather interestingly

$$rac{R_D}{R_{D;SM}}\simeq rac{R_{D^*}}{R_{D^*;SM}}\simeq rac{R_{J/\psi}}{R_{J/\psi;SM}}$$

 But current estimates of the form factors mainly based on models with uncertainties difficult to assess (compared to R_D and R_{D*})

Potential issues

- Cross-checks of the form factors would be very welcome !
- Radiative corrs 3-4% for $E_{\gamma}^{
 m cut}=$ 20 40 MeV [De Boer, Kitahira, Nisandzic]
- Width of the D^* in $D\pi$ [Chavez-Saab, Toledo; Le Yaouanc, Leroy, Roudeau]
 - Contribution from longitudinal polarisation to R_{D*} ?
 - \implies Possibly shift \simeq 9% in SM direction,

potentially reducing discrepancy from 3.4 σ to 2.2 σ

• Tail of D^* at high $D\pi$ mass contributing to $B \to [D\pi]_{broad} \ell \nu_{\ell}$?

Global fits in $b ightarrow c \ell ar{ u}_\ell$

[Bhattacharyaa,Nandi,Patra;Alok,Kumar,Kumar,Kumbhakar,Uma Sankar;Kumar,London,Watanabe;Freytsis,Ligeti,Ruderman]

- Often NP only for *l* = *τ*, assuming real Wilson coefficients (no CP violation), but some studies with also imaginary contributions
- Right-handed and (pseudo)scalar couplings disfavoured by B_c width (bound on B_c → τν) and shape of dΓ(B → D*τν)/dq²
- Tensor could describe the data, strong impact on P_{τ} and f_L
- Most simple explanation: NP in $C_{V_L\tau}$, change of G_F for $b \to c \tau \bar{\nu}_{\tau}$

 R_D and R_{D^*} not enough: more observables (angular analysis !)

to separate short and long distances ($\mu_b = m_b$)

 $\mathcal{H}(b
ightarrow s \gamma(^*)) \propto G_{F} V_{ts}^* V_{tb} \sim \mathcal{C}_i \mathcal{O}_i$

to separate short and long distances ($\mu_b = m_b$)

$$\mathcal{H}(b
ightarrow m{s} \gamma(^*)) \propto m{G_{F}} m{V}^*_{ts} m{V}_{tb} \sim \mathcal{C}_i m{\mathcal{O}_i}$$

to separate short and long distances $(\mu_b = m_b)$ • $\mathcal{O}_7 = \frac{e}{g^2} m_b \,\bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu} \,b$ [real or soft photon]

NP changes short-distance C_i or add new operators \mathcal{O}_i

- Chirally flipped ($W \rightarrow W_R$)
- (Pseudo)scalar ($W \rightarrow H^+$)
- Tensor operators ($\gamma \rightarrow T$)

 $\begin{array}{c} \mathcal{O}_{7} \rightarrow \mathcal{O}_{7'} \propto \bar{s} \sigma^{\mu\nu} (1 - \gamma_{5}) F_{\mu\nu} \, b \\ \mathcal{O}_{9}, \mathcal{O}_{10} \rightarrow \mathcal{O}_{S} \propto \bar{s} (1 + \gamma_{5}) b \bar{\ell} \ell, \mathcal{O}_{P} \\ \mathcal{O}_{9} \rightarrow \mathcal{O}_{T} \propto \bar{s} \sigma_{\mu\nu} (1 - \gamma_{5}) b \, \bar{\ell} \sigma_{\mu\nu} \ell \end{array}$

$b ightarrow s\ell\ell$ typical observables

$B ightarrow K^* \mu \mu$	Br, P _{1,2} , P' _{4,5,6,8} , F _L
$B ightarrow K^* ee$	$P_{1,2,3}, P'_{4,5}, F_L$
$B ightarrow K^* \ell \ell$	$R_{K}, R_{K^*}, Q_{4,5}$
$B_s \rightarrow \phi \mu \mu$	Br, <i>P</i> ₁ , <i>P</i> ' _{4,6} , <i>F</i> _L
${m B} o {m K} \mu \mu$	Br
$B ightarrow X_{s} \gamma$	Br
$B ightarrow X_{s} \mu \mu$	Br
$B_{s} ightarrow \mu \mu$	Br
$B_s o \phi \gamma$	Br, $S_{\phi\gamma}$, $A_{\Delta\Gamma;\phi\gamma}$
${m B} o {m K}^* \gamma$	Br, $\mathcal{S}_{\mathcal{K}^*\gamma}$

binned in most cases, sometimes with CP asymmetries

S. Descotes-Genon (LPT-Orsay)

Global fits

Two sources of hadronic uncertainties

$$\mathcal{A}(\mathcal{B} \to \mathcal{M}\ell\ell) = \frac{G_{F}\alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* [(\mathcal{A}_{\mu} + \mathcal{T}_{\mu}) \bar{u}_{\ell} \gamma^{\mu} v_{\ell} + \frac{\mathcal{B}_{\mu} \bar{u}_{\ell} \gamma^{\mu} \gamma_5 v_{\ell}]$$

Two sources of hadronic uncertainties

Form factors (local)

• Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{aligned} \mathbf{A}_{\mu} &= -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle \mathbf{M}|\bar{\mathbf{s}}\sigma_{\mu\nu}\mathbf{P}_{R}b|\mathbf{B}\rangle + \mathcal{C}_{9}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}b|\mathbf{B}\rangle \\ \mathbf{B}_{\mu} &= \mathcal{C}_{10}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}b|\mathbf{B}\rangle \end{aligned}$$

Two sources of hadronic uncertainties

Form factors (local)

Charm loop (non-local)

• Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{array}{lll} \mathbf{A}_{\mu} & = & -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle \mathbf{M}|\bar{\mathbf{s}}\sigma_{\mu\nu}\mathbf{P}_{B}b|\mathbf{B}\rangle + \mathcal{C}_{9}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}b|\mathbf{B}\rangle \\ \mathbf{B}_{\mu} & = & \mathcal{C}_{10}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}b|\mathbf{B}\rangle \end{array}$$

• Non-local contributions (charm loops): hadronic contribs.

 T_{μ} contributes like $\mathcal{O}_{7,9}$, but depends on q^2 and external states

Hadronic uncertainties: form factors

3 form factors for K, 7 form factors for K* and ϕ

- low recoil: lattice, with correlations [Horgan, Liu, Meinel, Wingate; HPQCD collab]
- large recoil: B-meson Light-Cone Sum Rule,
 - large error bars and no correlations [Khodjamirian, Mannel, Pivovarov, Wang] recently reanalysed with correlations [Gubernari, Kokulu, van Dyk]
- all:fit light-meson LCSR + lattice, small errs, correls [Bharucha, Straub, Zwicky]

Hadronic uncertainties: form factors

3 form factors for K, 7 form factors for K* and ϕ

- low recoil: lattice, with correlations [Horgan, Liu, Meinel, Wingate; HPQCD collab]
- large recoil: B-meson Light-Cone Sum Rule,
 - large error bars and no correlations recently reanalysed with correlations [Gubernari, Kokulu, van Dyk]
- all:fit light-meson LCSR + lattice, small errs, correls [Bharucha, Straub, Zwicky]

 former controversies about EFT to obtain/restore correlations for form factors discussed and all approaches in good agreement

[Jäger, Camalich; Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]

Charm loops

- important for resonance regions (charmonia)
- SM effect contributing to \mathcal{C}_9
- expected to depend on q^2
- ... but lepton universal (little effect on *R_K*, even with NP)

Charm loops

- important for resonance regions (charmonia)
- SM effect contributing to \mathcal{C}_9
- expected to depend on q^2
- ... but lepton universal (little effect on R_K, even with NP)
- Several theo/pheno approaches
 - LCSR estimate
 - order of magnitude estimate for the fits (LCSR or Λ/m_b), check with bin-by-bin fits [Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]
 - fit of sum of resonances to the data

[[]Khodjamirian, Mannel, Pivovarov, Wang]

[Blake, Egede, Owen, Pomery, Petridis]

Charm loops

- important for resonance regions (charmonia)
- SM effect contributing to \mathcal{C}_9
- expected to depend on q^2
- ... but lepton universal (little effect on R_K, even with NP)
- Several theo/pheno approaches
 - LCSR estimate

[Khodjamirian, Mannel, Pivovarov, Wang]

[Blake, Egede, Owen, Pomery, Petridis]

- order of magnitude estimate for the fits (LCSR or Λ/m_b), check with bin-by-bin fits [Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]
- fit of sum of resonances to the data
- fit of q²-parametrisation to the data [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Capdevila, SDG. Hofer, Matias]
- dispersive representation + $J/\psi, \psi(2S)$ data [Bobeth, Chrzaszcz, van Dyk, Virto]

Charm loops

- important for resonance regions (charmonia)
- SM effect contributing to \mathcal{C}_9
- expected to depend on q^2
- ... but lepton universal (little effect on R_K, even with NP)
- Several theo/pheno approaches
 - LCSR estimate

[Khodjamirian, Mannel, Pivovarov, Wang]

[Blake, Egede, Owen, Pomery, Petridis]

- order of magnitude estimate for the fits (LCSR or Λ/m_b), check with bin-by-bin fits [Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]
- fit of sum of resonances to the data
- fit of q²-parametrisation to the data [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Capdevila, SDG, Hofer, Matias]
- dispersive representation + $J/\psi, \psi(2S)$ data [Bobeth, Chrzaszcz, van Dyk, Virto]

No hint in the fits of missing large q^2 -dependent contribution

S. Descotes-Genon (LPT-Orsay)

Global fits

Global fits in $b \rightarrow s\ell\ell$

• 175 obs in [Capdevila, Crivellin, SDG, Matias, Virto], agree well with other global fits

[Straub, Stangl, Altmannshoffer; Hurth, Mahmoudi, Neshatpour; Geng, Grinstein, Jäger, Camalich, Ren, Shi]

- Real contributions, based on absence of CP violation
- Favoured $C_{9\mu}^{NP} \simeq O(-1)$ + smaller corrections to other C_{λ}
- *C*^{NP}_{9μ} = -*C*^{NP}_{10μ} also good scenario (NP models with *SU*(2)_L)

 Overall consistency (All vs LFUV obs, channels, Brs vs angular)

S. Descotes-Genon (LPT-Orsay)

Are we general enough?

 $C_{i\ell}^{NP}$ $\ell = e, \mu, \tau$ not related, to be fixed by data (scarce for *e*, none for τ)

• Often no NP assumed in $b \rightarrow see$, but still room (eg NP in $C_{9\mu}, C_{9e}$)

- 4-par best-fit pt $(C_{9e}, C_{9\mu}, C_{10e}, C_{10\mu})^{NP} = -1.26, -1.18, 1.14, 0.23$
- Possibility of large LFU NP contribs, with preference for V A LFUV but V + A for LFU [Algueró, Capdevila, SDG, Masjuan, Matias]

S. Descotes-Genon (LPT-Orsay)

$b ightarrow c \ell ar{ u}_\ell$ and $b ightarrow s \ell \ell$ combined analysis

- SMEFT: NP higher-dim ops obeying $SU_C(3) \times SU_L(2) \times U_Y(1)$
- Restrictive (but reasonable) assumptions

[Butazzo, Greljo, Isidroi, Marzocca]

- Only left-handed fields
- No lepton-flavour violating contributions
- $U(2)_q \times U_\ell(2)$ symmetry for couplings with same structure

$$\begin{split} \lambda^{q}_{ij}\lambda^{\ell}_{ab} & \left[\frac{C_{S}}{\Lambda^{2}} (\bar{Q}^{j}_{L}\gamma_{\mu}Q^{j}_{L}) (\bar{L}^{a}_{L}\gamma^{\mu}L^{b}_{L}) \right. \\ & \left. + \frac{C_{T}}{\Lambda^{2}} (\bar{Q}^{j}_{L}\gamma_{\mu}\sigma^{\alpha}Q^{j}_{L}) (\bar{L}^{a}_{L}\gamma^{\mu}\sigma^{\alpha}L^{b}_{L}) \right] \\ Q^{j}_{L} & = \begin{pmatrix} V^{*}_{jj} & u^{j}_{L} \\ d^{j}_{L} \end{pmatrix} \qquad L^{a}_{L} = \begin{pmatrix} \nu^{a}_{L} \\ \ell^{a}_{L} \end{pmatrix} \end{split}$$

Single-mediator models and more

[Butazzo, Greljo, Isidroi, Marzocca]

- Disfavours colourless vectors (W', Z', green) and coloured scalars (S₁, S₃ leptoquarks, blue) + high p_T constraints
- Favours *U*₁ vector leptoquark (3, 1, 2/3), which also passes direct LHC production limits
- Same conclusions taking a general structure of the couplings [Kumar, London, Watanabe]

Possible to consider models with more than 1 mediator

- Two scalar leptoquarks
- Three-generation Pati-Salam
- Composite models

[See P. Stangl's talk]

^{• . .}

Outlook

- $b o s \ell^+ \ell^-$ and $b o c \ell ar{
 u}_\ell$
 - Many observables, more or less sensitive to hadronic unc.
 - Global fit to b → cℓ v̄ still relying on limited amount of information, with questions on hadronic uncertainties (form factors, D* width)
 - Global fit to $b \to s\ell^+\ell^-$ in favour of large deviation for C_9 in $b \to s\mu\mu$ and does not seem to favour hadronic explanations
 - Global fits of both sets using SMEFT, with many models proposed for either or both sets of deviations
 - Several tools to perform some fits (flavio, EOS, Hammer...)

Where to go ?

- Better measurements of q^2 and angular dependence
- $\bullet\,$ More info on processes with e and/or τ
- Other LFU violating observables
- Provide lattice form factors over larger range
- Further constraints on *cc* loops
- New observables (CP-violation, time-dep, LFUV and LFV obs...)